
ptg

ptg

Test-Driven JavaScript
Development

ptg

Test-Driven JavaScript
Development

Christian Johansen

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Johansen, Christian, 1982-
Test-driven JavaScript development / Christian Johansen.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-321-68391-5 (pbk. : alk. paper)
ISBN-10: 0-321-68391-9 (pbk. : alk. paper)
1. JavaScript (Computer program language) I. Title.
QA76.73.J39J64 2011
005.13’3–dc22 2010027298

Copyright c© 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-68391-5

ISBN-10: 0-321-68391-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, September 2010

Acquisitions Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Madhu Bhardwaj,
Glyph International

Project Coordinator
Elizabeth Ryan

Copy Editor
Mike Read

Indexer
Robert Swanson

Proofreader
David Daniels

Technical Reviewers
Andrea Giammarchi
Joshua Gross
Jacob Seidelin

Cover Designer
Gary Adair

Compositor
Glyph International

 From the Library of WoweBook.Com

ptg

To Frøydis and Kristin, my special ladies.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

Contents

Preface xix

Acknowledgments xxv

About the Author xxvii

Part I Test-Driven Development 1

1. Automated Testing 3
1.1 The Unit Test 4

1.1.1 Unit Testing Frameworks 5
1.1.2 strftime for JavaScript Dates 5

1.2 Assertions 9
1.2.1 Red and Green 10

1.3 Test Functions, Cases, and Suites 11
1.3.1 Setup and Teardown 13

1.4 Integration Tests 14
1.5 Benefits of Unit Tests 16

1.5.1 Regression Testing 16
1.5.2 Refactoring 17
1.5.3 Cross-Browser Testing 17
1.5.4 Other Benefits 17

1.6 Pitfalls of Unit Testing 18
1.7 Summary 18

2. The Test-Driven Development Process 21
2.1 Goal and Purpose of Test-Driven Development 21

2.1.1 Turning Development Upside-Down 22
2.1.2 Design in Test-Driven Development 22

vii

 From the Library of WoweBook.Com

ptg

viii Contents

2.2 The Process 23
2.2.1 Step 1: Write a Test 24
2.2.2 Step 2: Watch the Test Fail 25
2.2.3 Step 3: Make the Test Pass 26

2.2.3.1 You Ain’t Gonna Need It 26
2.2.3.2 Passing the Test for String.prototype.trim 27
2.2.3.3 The Simplest Solution that Could Possibly Work 27

2.2.4 Step 4: Refactor to Remove Duplication 28
2.2.5 Lather, Rinse, Repeat 29

2.3 Facilitating Test-Driven Development 29
2.4 Benefits of Test-Driven Development 30

2.4.1 Code that Works 30
2.4.2 Honoring the Single Responsibility Principle 30
2.4.3 Forcing Conscious Development 31
2.4.4 Productivity Boost 31

2.5 Summary 31

3. Tools of the Trade 33
3.1 xUnit Test Frameworks 33

3.1.1 Behavior-Driven Development 34
3.1.2 Continuous Integration 34
3.1.3 Asynchronous Tests 35
3.1.4 Features of xUnit Test Frameworks 35

3.1.4.1 The Test Runner 35
3.1.5 Assertions 36
3.1.6 Dependencies 37

3.2 In-Browser Test Frameworks 37
3.2.1 YUI Test 38

3.2.1.1 Setup 38
3.2.1.2 Running Tests 40

3.2.2 Other In-Browser Testing Frameworks 40
3.3 Headless Testing Frameworks 41

3.3.1 Crosscheck 42
3.3.2 Rhino and env.js 42
3.3.3 The Issue with Headless Test Runners 42

3.4 One Test Runner to Rule Them All 42
3.4.1 How JsTestDriver Works 43
3.4.2 JsTestDriver Disadvantages 44
3.4.3 Setup 44

3.4.3.1 Download the Jar File 44
3.4.3.2 Windows Users 45
3.4.3.3 Start the Server 45
3.4.3.4 Capturing Browsers 46

 From the Library of WoweBook.Com

ptg

Contents ix

3.4.3.5 Running Tests 46
3.4.3.6 JsTestDriver and TDD 48

3.4.4 Using JsTestDriver From an IDE 49
3.4.4.1 Installing JsTestDriver in Eclipse 49
3.4.4.2 Running JsTestDriver in Eclipse 50

3.4.5 Improved Command Line Productivity 51
3.4.6 Assertions 51

3.5 Summary 52

4. Test to Learn 55
4.1 Exploring JavaScript with Unit Tests 55

4.1.1 Pitfalls of Programming by Observation 58
4.1.2 The Sweet Spot for Learning Tests 59

4.1.2.1 Capturing Wisdom Found in the Wild 59
4.1.2.2 Exploring Weird Behavior 59
4.1.2.3 Exploring New Browsers 59
4.1.2.4 Exploring Frameworks 60

4.2 Performance Tests 60
4.2.1 Benchmarks and Relative Performance 60
4.2.2 Profiling and Locating Bottlenecks 68

4.3 Summary 69

Part II JavaScript for Programmers 71

5. Functions 73
5.1 Defining Functions 73

5.1.1 Function Declaration 73
5.1.2 Function Expression 74
5.1.3 The Function Constructor 75

5.2 Calling Functions 77
5.2.1 The arguments Object 77
5.2.2 Formal Parameters and arguments 79

5.3 Scope and Execution Context 80
5.3.1 Execution Contexts 81
5.3.2 The Variable Object 81
5.3.3 The Activation Object 82
5.3.4 The Global Object 82
5.3.5 The Scope Chain 83
5.3.6 Function Expressions Revisited 84

5.4 The this Keyword 87
5.4.1 Implicitly Setting this 88
5.4.2 Explicitly Setting this 89
5.4.3 Using Primitives As this 89

5.5 Summary 91

 From the Library of WoweBook.Com

ptg

x Contents

6. Applied Functions and Closures 93
6.1 Binding Functions 93

6.1.1 Losing this: A Lightbox Example 93
6.1.2 Fixing this via an Anonymous Function 95
6.1.3 Function.prototype.bind 95
6.1.4 Binding with Arguments 97
6.1.5 Currying 99

6.2 Immediately Called Anonymous Functions 101
6.2.1 Ad Hoc Scopes 101

6.2.1.1 Avoiding the Global Scope 101
6.2.1.2 Simulating Block Scope 102

6.2.2 Namespaces 103
6.2.2.1 Implementing Namespaces 104
6.2.2.2 Importing Namespaces 106

6.3 Stateful Functions 107
6.3.1 Generating Unique Ids 107
6.3.2 Iterators 109

6.4 Memoization 112
6.5 Summary 115

7. Objects and Prototypal Inheritance 117
7.1 Objects and Properties 117

7.1.1 Property Access 118
7.1.2 The Prototype Chain 119
7.1.3 Extending Objects through the Prototype Chain 121
7.1.4 Enumerable Properties 122

7.1.4.1 Object.prototype.hasOwnProperty 124
7.1.5 Property Attributes 126

7.1.5.1 ReadOnly 126
7.1.5.2 DontDelete 126
7.1.5.3 DontEnum 126

7.2 Creating Objects with Constructors 130
7.2.1 prototype and [[Prototype]] 130
7.2.2 Creating Objects with new 131
7.2.3 Constructor Prototypes 132

7.2.3.1 Adding Properties to the Prototype 132
7.2.4 The Problem with Constructors 135

7.3 Pseudo-classical Inheritance 136
7.3.1 The Inherit Function 137
7.3.2 Accessing [[Prototype]] 138
7.3.3 Implementing super 139

7.3.3.1 The _super Method 140

 From the Library of WoweBook.Com

ptg

Contents xi

7.3.3.2 Performance of the super Method 143
7.3.3.3 A _super Helper Function 143

7.4 Encapsulation and Information Hiding 145
7.4.1 Private Methods 145
7.4.2 Private Members and Privileged Methods 147
7.4.3 Functional Inheritance 148

7.4.3.1 Extending Objects 149
7.5 Object Composition and Mixins 150

7.5.1 The Object.create Method 151
7.5.2 The tddjs.extend Method 153
7.5.3 Mixins 157

7.6 Summary 158

8. ECMAScript 5th Edition 159
8.1 The Close Future of JavaScript 159
8.2 Updates to the Object Model 161

8.2.1 Property Attributes 161
8.2.2 Prototypal Inheritance 164
8.2.3 Getters and Setters 166
8.2.4 Making Use of Property Attributes 167
8.2.5 Reserved Keywords as Property Identifiers 170

8.3 Strict Mode 171
8.3.1 Enabling Strict Mode 171
8.3.2 Strict Mode Changes 172

8.3.2.1 No Implicit Globals 172
8.3.2.2 Functions 172
8.3.2.3 Objects, Properties, and Variables 174
8.3.2.4 Additional Restrictions 174

8.4 Various Additions and Improvements 174
8.4.1 Native JSON 175
8.4.2 Function.prototype.bind 175
8.4.3 Array Extras 175

8.5 Summary 176

9. Unobtrusive JavaScript 177
9.1 The Goal of Unobtrusive JavaScript 177
9.2 The Rules of Unobtrusive JavaScript 178

9.2.1 An Obtrusive Tabbed Panel 179
9.2.2 Clean Tabbed Panel Markup 181
9.2.3 TDD and Progressive Enhancement 182

9.3 Do Not Make Assumptions 183
9.3.1 Don’t Assume You Are Alone 183

9.3.1.1 How to Avoid 183

 From the Library of WoweBook.Com

ptg

xii Contents

9.3.2 Don’t Assume Markup Is Correct 183
9.3.2.1 How to Avoid 184

9.3.3 Don’t Assume All Users Are Created Equal 184
9.3.3.1 How to Avoid 184

9.3.4 Don’t Assume Support 184
9.4 When Do the Rules Apply? 184
9.5 Unobtrusive Tabbed Panel Example 185

9.5.1 Setting Up the Test 186
9.5.2 The tabController Object 187
9.5.3 The activateTab Method 190
9.5.4 Using the Tab Controller 192

9.6 Summary 196

10. Feature Detection 197
10.1 Browser Sniffing 198

10.1.1 User Agent Sniffing 198
10.1.2 Object Detection 199
10.1.3 The State of Browser Sniffing 200

10.2 Using Object Detection for Good 200
10.2.1 Testing for Existence 201
10.2.2 Type Checking 201
10.2.3 Native and Host Objects 202
10.2.4 Sample Use Testing 204
10.2.5 When to Test 206

10.3 Feature Testing DOM Events 207
10.4 Feature Testing CSS Properties 208
10.5 Cross-Browser Event Handlers 210
10.6 Using Feature Detection 213

10.6.1 Moving Forward 213
10.6.2 Undetectable Features 214

10.7 Summary 214

Part III Real-World Test-Driven Development in JavaScript 217

11. The Observer Pattern 219
11.1 The Observer in JavaScript 220

11.1.1 The Observable Library 220
11.1.2 Setting up the Environment 221

11.2 Adding Observers 222
11.2.1 The First Test 222

11.2.1.1 Running the Test and Watching It Fail 222
11.2.1.2 Making the Test Pass 223

 From the Library of WoweBook.Com

ptg

Contents xiii

11.2.2 Refactoring 225
11.3 Checking for Observers 226

11.3.1 The Test 226
11.3.1.1 Making the Test Pass 227
11.3.1.2 Solving Browser Incompatibilities 228

11.3.2 Refactoring 229
11.4 Notifying Observers 230

11.4.1 Ensuring That Observers Are Called 230
11.4.2 Passing Arguments 231

11.5 Error Handling 232
11.5.1 Adding Bogus Observers 232
11.5.2 Misbehaving Observers 233
11.5.3 Documenting Call Order 234

11.6 Observing Arbitrary Objects 235
11.6.1 Making the Constructor Obsolete 236
11.6.2 Replacing the Constructor with an Object 239
11.6.3 Renaming Methods 240

11.7 Observing Arbitrary Events 241
11.7.1 Supporting Events in observe 241
11.7.2 Supporting Events in notify 243

11.8 Summary 246

12. Abstracting Browser Differences: Ajax 247
12.1 Test Driving a Request API 247

12.1.1 Discovering Browser Inconsistencies 248
12.1.2 Development Strategy 248
12.1.3 The Goal 248

12.2 Implementing the Request Interface 249
12.2.1 Project Layout 249
12.2.2 Choosing the Interface Style 250

12.3 Creating an XMLHttpRequest Object 250
12.3.1 The First Test 251
12.3.2 XMLHttpRequest Background 251
12.3.3 Implementing tddjs.ajax.create 253
12.3.4 Stronger Feature Detection 254

12.4 Making Get Requests 255
12.4.1 Requiring a URL 255
12.4.2 Stubbing the XMLHttpRequest Object 257

12.4.2.1 Manual Stubbing 257
12.4.2.2 Automating Stubbing 258
12.4.2.3 Improved Stubbing 261
12.4.2.4 Feature Detection and ajax.create 263

 From the Library of WoweBook.Com

ptg

xiv Contents

12.4.3 Handling State Changes 263
12.4.4 Handling the State Changes 265

12.4.4.1 Testing for Success 265
12.5 Using the Ajax API 269

12.5.1 The Integration Test 269
12.5.2 Test Results 270
12.5.3 Subtle Trouble Ahead 271
12.5.4 Local Requests 273
12.5.5 Testing Statuses 274

12.5.5.1 Further Status Code Tests 276
12.6 Making POST Requests 277

12.6.1 Making Room for Posts 277
12.6.1.1 Extracting ajax.request 278
12.6.1.2 Making the Method Configurable 278
12.6.1.3 Updating ajax.get 280
12.6.1.4 Introducing ajax.post 281

12.6.2 Sending Data 282
12.6.2.1 Encoding Data in ajax.request 283
12.6.2.2 Sending Encoded Data 284
12.6.2.3 Sending Data with GET Requests 285

12.6.3 Setting Request Headers 287
12.7 Reviewing the Request API 288
12.8 Summary 292

13. Streaming Data with Ajax and Comet 293
13.1 Polling for Data 294

13.1.1 Project Layout 294
13.1.2 The Poller: tddjs.ajax.poller 295

13.1.2.1 Defining the Object 296
13.1.2.2 Start Polling 296
13.1.2.3 Deciding the Stubbing Strategy 298
13.1.2.4 The First Request 299
13.1.2.5 The complete Callback 300

13.1.3 Testing Timers 303
13.1.3.1 Scheduling New Requests 304
13.1.3.2 Configurable Intervals 306

13.1.4 Configurable Headers and Callbacks 308
13.1.5 The One-Liner 311

13.2 Comet 314
13.2.1 Forever Frames 314
13.2.2 Streaming XMLHttpRequest 315
13.2.3 HTML5 315

13.3 Long Polling XMLHttpRequest 315

 From the Library of WoweBook.Com

ptg

Contents xv

13.3.1 Implementing Long Polling Support 316
13.3.1.1 Stubbing Date 316
13.3.1.2 Testing with Stubbed Dates 317

13.3.2 Avoiding Cache Issues 319
13.3.3 Feature Tests 320

13.4 The Comet Client 321
13.4.1 Messaging Format 321
13.4.2 Introducing ajax.CometClient 323
13.4.3 Dispatching Data 323

13.4.3.1 Adding ajax.CometClient.dispatch 324
13.4.3.2 Delegating Data 324
13.4.3.3 Improved Error Handling 325

13.4.4 Adding Observers 327
13.4.5 Server Connection 329

13.4.5.1 Separating Concerns 334
13.4.6 Tracking Requests and Received Data 335
13.4.7 Publishing Data 338
13.4.8 Feature Tests 338

13.5 Summary 339

14. Server-Side JavaScript with Node.js 341
14.1 The Node.js Runtime 341

14.1.1 Setting up the Environment 342
14.1.1.1 Directory Structure 342
14.1.1.2 Testing Framework 343

14.1.2 Starting Point 343
14.1.2.1 The Server 343
14.1.2.2 The Startup Script 344

14.2 The Controller 345
14.2.1 CommonJS Modules 345
14.2.2 Defining the Module: The First Test 345
14.2.3 Creating a Controller 346
14.2.4 Adding Messages on POST 347

14.2.4.1 Reading the Request Body 348
14.2.4.2 Extracting the Message 351
14.2.4.3 Malicious Data 354

14.2.5 Responding to Requests 354
14.2.5.1 Status Code 354
14.2.5.2 Closing the Connection 355

14.2.6 Taking the Application for a Spin 356
14.3 Domain Model and Storage 358

14.3.1 Creating a Chat Room 358
14.3.2 I/O in Node 358

 From the Library of WoweBook.Com

ptg

xvi Contents

14.3.3 Adding Messages 359
14.3.3.1 Dealing with Bad Data 359
14.3.3.2 Successfully Adding Messages 361

14.3.4 Fetching Messages 363
14.3.4.1 The getMessagesSince Method 363
14.3.4.2 Making addMessage Asynchronous 365

14.4 Promises 367
14.4.1 Refactoring addMessage to Use Promises 367

14.4.1.1 Returning a Promise 368
14.4.1.2 Rejecting the Promise 369
14.4.1.3 Resolving the Promise 370

14.4.2 Consuming Promises 371
14.5 Event Emitters 372

14.5.1 Making chatRoom an Event Emitter 372
14.5.2 Waiting for Messages 375

14.6 Returning to the Controller 378
14.6.1 Finishing the post Method 378
14.6.2 Streaming Messages with GET 380

14.6.2.1 Filtering Messages with Access Tokens 381
14.6.2.2 The respond Method 382
14.6.2.3 Formatting Messages 383
14.6.2.4 Updating the Token 385

14.6.3 Response Headers and Body 386
14.7 Summary 387

15. TDD and DOM Manipulation: The Chat Client 389
15.1 Planning the Client 389

15.1.1 Directory Structure 390
15.1.2 Choosing the Approach 390

15.1.2.1 Passive View 391
15.1.2.2 Displaying the Client 391

15.2 The User Form 392
15.2.1 Setting the View 392

15.2.1.1 Setting Up the Test Case 392
15.2.1.2 Adding a Class 393
15.2.1.3 Adding an Event Listener 394

15.2.2 Handling the Submit Event 398
15.2.2.1 Aborting the Default Action 398
15.2.2.2 Embedding HTML in Tests 400
15.2.2.3 Getting the Username 401
15.2.2.4 Notifying Observers of the User 403
15.2.2.5 Removing the Added Class 406
15.2.2.6 Rejecting Empty Usernames 406

15.2.3 Feature Tests 407

 From the Library of WoweBook.Com

ptg

Contents xvii

15.3 Using the Client with the Node.js Backend 408
15.4 The Message List 411

15.4.1 Setting the Model 411
15.4.1.1 Defining the Controller and Method 411
15.4.1.2 Subscribing to Messages 412

15.4.2 Setting the View 414
15.4.3 Adding Messages 416
15.4.4 Repeated Messages from Same User 418
15.4.5 Feature Tests 420
15.4.6 Trying it Out 420

15.5 The Message Form 422
15.5.1 Setting up the Test 422
15.5.2 Setting the View 422

15.5.2.1 Refactoring: Extracting the Common Parts 423
15.5.2.2 Setting messageFormController’s View 424

15.5.3 Publishing Messages 425
15.5.4 Feature Tests 428

15.6 The Final Chat Client 429
15.6.1 Finishing Touches 430

15.6.1.1 Styling the Application 430
15.6.1.2 Fixing the Scrolling 431
15.6.1.3 Clearing the Input Field 432

15.6.2 Notes on Deployment 433
15.7 Summary 434

Part IV Testing Patterns 437

16. Mocking and Stubbing 439
16.1 An Overview of Test Doubles 439

16.1.1 Stunt Doubles 440
16.1.2 Fake Object 440
16.1.3 Dummy Object 441

16.2 Test Verification 441
16.2.1 State Verification 442
16.2.2 Behavior Verification 442
16.2.3 Implications of Verification Strategy 443

16.3 Stubs 443
16.3.1 Stubbing to Avoid Inconvenient Interfaces 444
16.3.2 Stubbing to Force Certain Code Paths 444
16.3.3 Stubbing to Cause Trouble 445

16.4 Test Spies 445
16.4.1 Testing Indirect Inputs 446
16.4.2 Inspecting Details about a Call 446

16.5 Using a Stub Library 447

 From the Library of WoweBook.Com

ptg

xviii Contents

16.5.1 Creating a Stub Function 448
16.5.2 Stubbing a Method 448
16.5.3 Built-in Behavior Verification 451
16.5.4 Stubbing and Node.js 452

16.6 Mocks 453
16.6.1 Restoring Mocked Methods 453
16.6.2 Anonymous Mocks 454
16.6.3 Multiple Expectations 455
16.6.4 Expectations on the this Value 456

16.7 Mocks or Stubs? 457
16.8 Summary 458

17. Writing Good Unit Tests 461
17.1 Improving Readability 462

17.1.1 Name Tests Clearly to Reveal Intent 462
17.1.1.1 Focus on Scannability 462
17.1.1.2 Breaking Free of Technical Limitations 463

17.1.2 Structure Tests in Setup, Exercise, and Verify Blocks 464
17.1.3 Use Higher-Level Abstractions to Keep Tests Simple 465

17.1.3.1 Custom Assertions: Behavior Verification 465
17.1.3.2 Domain Specific Test Helpers 466

17.1.4 Reduce Duplication, Not Clarity 467
17.2 Tests as Behavior Specification 468

17.2.1 Test One Behavior at a Time 468
17.2.2 Test Each Behavior Only Once 469
17.2.3 Isolate Behavior in Tests 470

17.2.3.1 Isolation by Mocking and Stubbing 470
17.2.3.2 Risks Introduced by Mocks and Stubs 471
17.2.3.3 Isolation by Trust 472

17.3 Fighting Bugs in Tests 473
17.3.1 Run Tests Before Passing Them 473
17.3.2 Write Tests First 473
17.3.3 Heckle and Break Code 474
17.3.4 Use JsLint 474

17.4 Summary 475

Bibliography 477

Index 479

 From the Library of WoweBook.Com

ptg

Preface

Author’s Vision for the Book
Over the recent years, JavaScript has grown up. Long gone are the glory days
of “DHTML”; we are now in the age of “Ajax,” possibly even “HTML5.” Over
the past years JavaScript gained some killer applications; it gained robust libraries
to aid developers in cross-browser scripting; and it gained a host of tools such
as debuggers, profilers, and unit testing frameworks. The community has worked
tirelessly to bring in the tools they know and love from other languages to help give
JavaScript a “real” development environment in which they can use the workflows
and knowledge gained from working in other environments and focus on building
quality applications.

Still, the JavaScript community at large is not particularly focused on automated
testing, and test-driven development is still rare among JavaScript developers—in
spite of working in the language with perhaps the widest range of target platforms.
For a long time this may have been a result of lacking tool support, but new unit
testing frameworks are popping up all the time, offering a myriad of ways to test
your code in a manner that suits you. Even so, most web application developers
skimp on testing their JavaScript. I rarely meet a web developer who has the kind
of confidence to rip core functionality right out of his application and rearrange it,
that a strong test suite gives you. This confidence allows you to worry less about
breaking your application, and focus more on implementing new features.

With this book I hope to show you that unit testing and test-driven development
in JavaScript have come a long way, and that embracing them will help you write
better code and become a more productive programmer.

xix

 From the Library of WoweBook.Com

ptg

xx Preface

What This Book is About
This book is about programming JavaScript for the real world, using the techniques
and workflow suggested by Test-Driven Development. It is about gaining confidence
in your code through test coverage, and gaining the ability to fearlessly refactor and
organically evolve your code base. It is about writing modular and testable code. It
is about writing JavaScript that works in a wide variety of environments and that
doesn’t get in your user’s way.

How This Book is Organized
This book has four parts. They may be read in any order you’re comfortable with.
Part II introduces a few utilities that are used throughout the book, but their usage
should be clear enough, allowing you to skip that part if you already have a solid
understanding of programming JavaScript, including topics such as unobtrusive
JavaScript and feature detection.

Part I: Test-Driven Development
In the first part I’ll introduce you to the concept of automated tests and test-driven
development. We’ll start by looking at what a unit test is, what it does, and what
it’s good for. Then we’ll build our workflow around them as I introduce the test-
driven development process. To round the topic off I’ll show you a few available
unit testing frameworks for JavaScript, discuss their pros and cons, and take a closer
look at the one we’ll be using the most throughout the book.

Part II: JavaScript for Programmers
In Part II we’re going to get a deeper look at programming in JavaScript. This part is
by no means a complete introduction to the JavaScript language. You should already
either have some experience with JavaScript—perhaps by working with libraries like
jQuery, Prototype, or the like—or experience from other programming languages.
If you’re an experienced programmer with no prior experience with JavaScript, this
part should help you understand where JavaScript differs from other languages,
especially less dynamic ones, and give you the foundation you’ll need for the real-
world scenarios in Part III.

If you’re already well-versed in advanced JavaScript concepts such as closures,
prototypal inheritance, the dynamic nature of this, and feature detection, you may
want to skim this part for a reminder, or you may want to skip directly to Part III.

 From the Library of WoweBook.Com

ptg

Preface xxi

While working through some of JavaScript’s finer points, I’ll use unit tests to
show you how the language behaves, and we’ll take the opportunity to let tests drive
us through the implementation of some helper utilities, which we’ll use throughout
Part III.

Part III: Real-World Test-Driven Development in JavaScript
In this part we’ll tackle a series of small projects in varying environments. We’ll see
how to develop a small general purpose JavaScript API, develop a DOM dependent
widget, abstract browser differences, implement a server-side JavaScript application,
and more—all using test-driven development. This part focuses on how test-driven
development can help in building cleaner API’s, better modularized code and more
robust software.

Each project introduces new test-related concepts, and shows them in practice
by implementing a fully functional, yet limited piece of code. Throughout this part
we will, among other things, learn how to test code that depends on browser API’s,
timers, event handlers, DOM manipulation, and asynchronous server requests (i.e.,
“Ajax”). We will also get to practice techniques such as stubbing, refactoring, and
using design patterns to solve problems in elegant ways.

Throughout each chapter in this part, ideas on how to extend the functionality
developed are offered, giving you the ability to practice by improving the code on
your own. Extended solutions are available from the book’s website.1

I’ve taken great care throughout these projects to produce runnable code that
actually does things. The end result of the five chapters in Part III is a fully func-
tional instant messaging chat client and server, written exclusively using test-driven
development, in nothing but JavaScript.

Part IV: Testing Patterns
The final part of the book reviews some of the techniques used throughout Part
III from a wider angle. Test doubles, such as mocks and stubs, are investigated in
closer detail along with different forms of test verification. Finally, we review some
guidelines to help you write good unit tests.

Conventions Used in This Book
JavaScript is the name of the language originally designed by Brendan Eich for
Netscape in 1995. Since then, a number of alternative implementations have

1. http://tddjs.com

 From the Library of WoweBook.Com

http://tddjs.com

ptg

xxii Preface

surfaced, and the language has been standardized by ECMA International as ECMA-
262, also known as ECMAScript. Although the alternative implementations have
their own names, such as Microsoft’s JScript, they are generally collectively referred
to as “JavaScript,” and I will use JavaScript in this sense as well.

Throughout the text, monospaced font is used to refer to objects, functions,
and small snippets of code.

Who Should Read This Book
This book is for programmers—especially those who write, or are interested in
writing JavaScript. Whether you’re a Ruby developer focusing primarily on Ruby
on Rails; a Java or .Net developer working with web applications; a frontend web
developer whose primary tools are JavaScript, CSS, and HTML; or even a backend
developer with limited JavaScript experience, I hope and think you will find this
book useful.

The book is intended for web application developers who need a firmer grasp of
the finer details of the JavaScript language, as well as better understanding on how
to boost their productivity and confidence while writing maintainable applications
with fewer defects.

Skills Required For This Book
The reader is not required to have any previous knowledge of unit testing or test-
driven development. Automated tests are present through the whole book, and
reading should provide you with a strong understanding of how to successfully use
them.

Equally, the reader is not required to be a JavaScript expert, or even interme-
diate. My hope is that the book will be useful to programmers with very limited
JavaScript experience and savvy JavaScripters alike. You are required, however, to
possess some programming skills, meaning that in order to fully enjoy this book you
should have experience programming in some language, and be familiar with web
application development. This book is not an introductory text in any of the basic
programming related topics, web application-specific topics included.

The second part of the book, which focuses on the JavaScript language, focuses
solely on the qualities of JavaScript that set it apart from the pack, and as such
cannot be expected to be a complete introduction to the language. It is expected
that you will be able to pick up syntax and concepts not covered in this part through
examples using them.

 From the Library of WoweBook.Com

ptg

Preface xxiii

In particular, Part II focuses on JavaScript’s functions and closures; JavaScript’s
object model, including prototypal inheritance; and models for code-reuse. Ad-
ditionally, we will go through related programming practices such as unobtrusive
JavaScript and feature detection, both required topics to understand for anyone
targeting the general web.

About the Book’s Website
The book has an accompanying website, http://tddjs.com. At this location you will
find all the code listings from the book, both as zip archives and full Git repositories,
which allow you to navigate the history and see how the code evolves. The Git
repositories are especially useful for the Part III sample projects, where a great deal
of refactoring is involved. Navigating the history of the Git repositories allows you
to see each step even when they simply change existing code.

You can also find my personal website at http://cjohansen.no in which you will
find additional articles, contact information, and so on. If you have any feedback
regarding the book, I would love to hear back from you.

 From the Library of WoweBook.Com

http://tddjs.com
http://cjohansen.no

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

Acknowledgments

Quite a few people have made this book possible. First of all I would like to
commend Trina MacDonald, my editor at Addison-Wesley, for being the one who
made all of this possible. Without her, there would be no book, and I deeply appre-
ciate her initiative as well as her ongoing help and motivation while I stumblingly
worked my way through my first book.

I would also like to extend my gratitude toward the rest of the team working
with me on this book; Songlin Qiu for making sure the text is comprehensible and
consistent, and for keeping sane while reviewing a constantly changing manuscript.
Her insights and suggestions have truly made the book better than I could ever
manage on my own. The same can be said for my technical reviewers, Andrea
Giammarchi, Jacob Seidelin, and Joshua Gross. Their impressive attention to detail,
thoughtful feedback, and will to challenge me have helped clarify code, remove
errors, and generally raise the quality of both code samples and surrounding prose,
as well as the structure of the book. Last, but not least, Olivia Basego helped me
cope with the administrative side of working with a publisher like Addison-Wesley
and some challenges related to living in Norway while writing for an American
publisher.

Closer to home, my employers and coworkers at Shortcut AS deserve an hon-
orable mention. Their flexibility in allowing me to occasionally take time off to
write and their genuine interest in the book at large have been very motivating and
key to finishing the manuscript in time. In particular I would like to thank Marius
Mårnes Mathiesen and August Lilleaas for frequent discussions of a truly inspiring
and insightful nature, as well as feedback on early drafts.

Last, but definitely not least; Frøydis and Kristin, friends and bandmates who
have given me space to complete this project and stayed patient while I’ve been

xxv

 From the Library of WoweBook.Com

ptg

xxvi Acknowledgments

zombie-like tired after long nights of writing, unavailable for various occasions, and
generally chained to the kitchen table for months (that’s right, I wrote this book in
the kitchen)—thank you for your support.

Finally I would like to extend my appreciation for the open source community
at large. Without it, this book would not be what it is. Open source is what ultimately
got me into writing in the first place. It kept my blog alive; it crossed my path with
my editor’s; and now it is responsible for the book you’re holding in your hands.
Most of the code throughout the book would not have been possible were it not
for people tirelessly putting out top-notch code for anyone to freely peruse, modify,
and use.

All software involved in my part of the production of this book are open source
as well. The book was written entirely in Emacs, using the document preparation
system LaTeX. A host of minor open source tools have been involved in the work-
flow, many of which are native citizens in my operating system of choice—GNU
Linux.

When the book hits the streets, it will have brought with it at least one new
open source project, and I hope I will contribute many more in the years to come.

 From the Library of WoweBook.Com

ptg

About the Author

Christian Johansen lives in Oslo, Norway, where he currently works for Shortcut
AS, a software company focusing on open source technology, web applications, and
mobile applications. Originally a student in informatics, mathematics, and digital
signal processing, Christian has spent his professional career specializing in web
applications and frontend technologies such as JavaScript, CSS, and HTML, tech-
nologies he has been passionate about since around the time the HTML 4.01 spec
was finalized.

As a consultant, Christian has worked with many high profile companies in
Norway, including leading companies within the finance and telecom sector, where
he has worked on small and big web applications ranging from the average CMS-
backed corporate website via e-commerce to self service applications.

In later years Christian has been an avid blogger. Derived from the same desire
to share and contribute to the community that gave him so much for free, Christian
has involved himself in and contributed to quite a few open source projects.

After working on several projects with less than trivial amounts of JavaScript,
Christian has felt the pain of developing “the cowboy style.” In an attempt at im-
proving code quality, confidence, and the ability to modify and maintain code with
greater ease, he has spent a great deal of his time both at work and in his spare
time over the last few years investigating unit testing and test-driven development
in JavaScript. Being a sworn TDD-er while developing in traditional server-side
languages, the cowboy style JavaScript approach wasn’t cutting it anymore. The
culmination of this passion is the book you now hold in your hands.

xxvii

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

Part I

Test-Driven Development

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

1Automated Testing

As web developers it is easy to find ourselves in situations where we spend un-
healthy amounts of time with the refresh button in our browsers. You know the drill:
type some code in your text editor, Alt+Tab to the browser, hit F5. Lather, rinse,
repeat. This sort of manual testing is time-consuming, error-prone, and irrepro-
ducible. Given that our web applications are expected to run on a vast combination
of browsers and platforms, testing them all manually will inevitably become an
impossible task. So we focus on a few combinations and perform the occasional
check-up on the broader selection. The end result is an unsatisfactory development
process and possibly brittle solutions.

Over the years lots of tools have emerged to improve our lives as web developers.
We now have developer tools for all the major browsers, there are several JavaScript
debuggers to choose from, and even IDEs to spot typos and other mistakes. Spend-
ing some time in Firefox’s Firebug plugin interacting with an application sure beats
those pesky alerts, but we’re still stuck with a manual, error-prone, and time-
consuming debugging process.

Humans are lazy, programmers even more so. When manual processes slow us
down, we seek to automate the manual behavior, allowing us to spend our time doing
something meaningful. In fact, as web developers, our job is more often than not
to automate some tedious task in order to improve business value. Online banking
is a great example—instead of going to the bank, standing in line and interacting

3

 From the Library of WoweBook.Com

ptg

4 Automated Testing

with another human to move some cash from account A to account B, we simply
log in from the comfort of our couch and get the job done in a couple of minutes.
Saves us time and saves the bank time.

Automated testing provides a solution to the manual testing process. Instead
of filling out that form one more time and hitting submit to see if the client-side
validations trigger as expected, we can instruct software to perform this test for
us. The advantages are obvious: given a convenient way to run the automated test
we can test in numerous browsers with a single effort, we can rerun the test at any
later stage, and the test may even run on some schedule that requires no manual
interaction whatsoever.

Automated software testing has been around for quite a while, even for
JavaScript. JsUnit dates back to 2001, Selenium came along in 2004, and since then
an incredible amount of tools have emerged. Still, automated testing seems to have
less momentum in the JavaScript/web development community than most other
programming communities. In this chapter we’ll investigate one means to automate
software testing, the unit test, and how it applies to the world of JavaScript.

1.1 The Unit Test
A unit test is a piece of code that tests a piece of production code. It does so
by setting up one or a few more objects in a known state, exercising them (e.g.,
calling a method), and then inspecting the result, comparing it to the expected
outcome.

Unit tests are stored on disk and should be easy and fast to run; if tests are
hard or slow to run, developers are less likely to run them. Unit tests should test
software components in isolation. They should also run isolated—no test should
ever depend on another test, tests should be able to run simultaneously and in any
order. In order to test components in isolation, it is sometimes necessary to mock
or stub their dependencies. We will discuss mocking and stubbing in context in
Part III, Real-World Test-Driven Development in JavaScript and in more detail in
Chapter 16, Mocking and Stubbing.

Having unit tests stored on disk, and usually stored in version control along
with the production code, means we can run tests at any time:

• When the implementation is complete, to verify its correct behavior

• When the implementation changes, to verify its behavior is intact

• When new units are added to the system, to verify it still fulfills its intended
purpose

 From the Library of WoweBook.Com

ptg

1.1 The Unit Test 5

1.1.1 Unit Testing Frameworks
Unit tests are usually written using a unit testing framework, although that is not
strictly necessary. In this chapter we’ll focus on the concept of unit tests, working
through the different aspects of writing and running them. We’ll defer the discussion
of actual testing frameworks for JavaScript to Chapter 3, Tools of the Trade.

It’s likely that you’ve already written more than a few unit tests, even if you
have never done any structured unit testing. Whenever you pop up a console in
a browser (e.g., Firebug, Safari’s Inspector or others) to debug or play live with
your code, you probably issue some statements and inspect the resulting state of
the involved objects. In many cases this is unit testing, only it isn’t automated and
it’s not reproducible. We’ll work through an example of this kind of testing and
gradually formalize it as an xUnit test case.

xUnit is a common way to refer to test frameworks that are either a direct port
of JUnit, or more loosely based on the ideas and concepts in it—or, more correctly,
the ideas and concepts in SUnit, the Smalltalk testing framework. Kent Beck, the
father of extreme programming, played an integral part in the creation of both these
frameworks, and even though SUnit was the first implementation, JUnit has done
the most in terms of popularizing the pattern.

1.1.2 strftime for JavaScript Dates
Many programming languages provide a strftime function or similar. It operates
on a date or timestamp, accepts a format string, and produces a formatted string
that represents the date. For example, in Ruby, strftime is available as a method
on time and date objects, and Listing 1.1 shows an example of its use.

Listing 1.1 Time#strftime in Ruby

Time.now.strftime("Printed on %m/%d/%Y")
#=> "Printed on 09/09/2010"

Listing 1.2 shows an early attempt at implementing strftime for JavaScript.
It’s implemented on Date.prototype which makes it available as a method on
all date objects. Don’t despair should you find it hard to understand all the details
of the code in this chapter. Concepts are more important than the actual code, and
most advanced techniques will be discussed in Part II, JavaScript for Programmers.

Listing 1.2 Starting point for strftime for JavaScript

Date.prototype.strftime = (function () {
function strftime(format) {

 From the Library of WoweBook.Com

ptg

6 Automated Testing

var date = this;

return (format + "").replace(/%([a-zA-Z])/g,
function (m, f) {

var formatter = Date.formats && Date.formats[f];

if (typeof formatter == "function") {
return formatter.call(Date.formats, date);

} else if (typeof formatter == "string") {
return date.strftime(formatter);

}

return f;
});

}

// Internal helper
function zeroPad(num) {
return (+num < 10 ? "0" : "") + num;

}

Date.formats = {
// Formatting methods
d: function (date) {

return zeroPad(date.getDate());
},

m: function (date) {
return zeroPad(date.getMonth() + 1);

},

y: function (date) {
return date.getYear() % 100;

},

Y: function (date) {
return date.getFullYear();

},

// Format shorthands
F: "%Y-%m-%d",
D: "%m/%d/%y"

};

return strftime;
}());

 From the Library of WoweBook.Com

ptg

1.1 The Unit Test 7

Date.prototype.strftime mainly consists of two parts: the replace
function which takes care of replacing format specifiers with their corresponding
values, and the Date.formats object which is a collection of helpers. It can be
broken down as follows:

• Date.formats is an object with format specifiers as keys and methods to
extract the corresponding data from a date as values

• Some format specifiers are convenient shortcuts to longer formats

• String.prototype.replace is used with a regexp that matches format
specifiers

• The replacer function checks if a given specifier is available on Date.
formats and uses it if it is, otherwise the specifier is left untouched (i.e.,
returned directly)

How would we go about testing this method? One way is to include the script
in our web page and use it where we need it and then verify manually if the website
displays dates correctly. If it doesn’t work, we probably won’t get a lot of hints as to
why, and are left debugging. A slightly more sophisticated approach (although not
by much) is to load it in a web page and pop open a console and play around with
it. Perhaps something like the session in Listing 1.3.

Listing 1.3 Manually checking code in Firebug

>>> var date = new Date(2009, 11, 5);
>>> date.strftime("%Y");
"2009"
>>> date.strftime("%m");
"12"
>>> date.strftime("%d");
"05"
>>> date.strftime("%y");
"9"

Uh-oh. Our Firebug session indicates all is not well with our strftime. This
means we’ll have to investigate and rerun the test to verify that it’s working. That’s
more manual labor. We can do better. Let’s create a minimal HTML page where we
load in the source script along with another script where we add some test code.
This way we can inspect the result of changes without having to retype the tests.
Listing 1.4 shows the HTML page that we’ll use to test.

 From the Library of WoweBook.Com

ptg

8 Automated Testing

Listing 1.4 A HTML test page

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html lang="en">
<head>
<title>Date.prototype.strftime test</title>
<meta http-equiv="content-type"

content="text/html;charset=utf-8">
</head>
<body>
<script type="text/javascript" src="../src/strftime.js">
</script>
<script type="text/javascript" src="strftime_test.js">
</script>

</body>
</html>

We then copy our console session into a new file, shown in Listing 1.5, which
will serve as the test file. To log results we’ll simply use console.log, which is
available in most modern browsers, and logs to the browser’s JavaScript console.

Listing 1.5 strftime test.js

var date = new Date(2009, 11, 5);
console.log(date.strftime("%Y"));
console.log(date.strftime("%m"));
console.log(date.strftime("%d"));
console.log(date.strftime("%y"));
console.log(date.strftime("%F"));

We now have a reproducible test case. We can then attend to the failure:
"%y" does not zero pad the number it returns. It turns out we simply forgot
to wrap the method call in a zeroPad() call. Listing 1.6 shows the updated
Date.formats.y method.

Listing 1.6 Zero-pad year

Date.formats = {
// ...

y: function (date) {
return zeroPad(date.getYear() % 100);

}

// ...
};

 From the Library of WoweBook.Com

ptg

1.2 Assertions 9

Now we can immediately rerun the test file in a browser and inspect the console
to verify that the change fixed the “y” format specifier. In all its simplicity, we’ve
now written a unit test. We’re targeting the smallest unit possible in JavaScript—the
function. You have probably done something like this many times without being
aware of the fact that it is a unit test.

While automating the process of creating test objects and calling some methods
on them is nice, we still need to manually check which calls are OK and which are
not. For a unit test to be truly automated, it needs to be self-checking.

1.2 Assertions
At the heart of a unit test is the assertion. An assertion is a predicate that states the
programmer’s intended state of a system. When debugging the broken “y” format
in the previous section, we carried out a manual assertion: when the strftime
method is called on a date from 2009 with the format of "%y", we expect it to
return the string "09". If it doesn’t, our system is not working correctly. Assertions
are used in unit tests to perform these checks automatically. When an assertion
fails, the test is aborted and we’re notified of the failure. Listing 1.7 shows a simple
assert function.

Listing 1.7 A simple assert function

function assert(message, expr) {
if (!expr) {

throw new Error(message);
}

assert.count++;

return true;
}

assert.count = 0;

The assert function simply checks that its second argument is truthy (i.e.,
any value except false, null, undefined, 0, "", and NaN). If it is, it incre-
ments the assertion counter, otherwise an error is thrown, using the first argument
as error message. We can leverage assert in our tests from before, as seen in
Listing 1.8.

 From the Library of WoweBook.Com

ptg

10 Automated Testing

Listing 1.8 Testing with assert

var date = new Date(2009, 9, 2);

try {
assert("%Y should return full year",

date.strftime("%Y") === "2009");
assert("%m should return month",

date.strftime("%m") === "10");
assert("%d should return date",

date.strftime("%d") === "02");
assert("%y should return year as two digits",

date.strftime("%y") === "09");
assert("%F should act as %Y-%m-%d",

date.strftime("%F") === "2009-10-02");

console.log(assert.count + " tests OK");
} catch (e) {
console.log("Test failed: " + e.message);

}

This requires slightly more typing, but the test now speaks for itself and is able
to verify itself. The manual labor has been reduced from inspecting each and every
outcome to simply inspecting the final status reported by the test.

1.2.1 Red and Green
In the world of unit testing, “red” and “green” are often used in place of “failure”
and “success,” respectively. Having tests go red or green makes the outcome even
clearer to interpret, and demands less effort on our part. Listing 1.9 provides a
simplified output function which uses the DOM to display messages in color.

Listing 1.9 Outputting messages in color

function output(text, color) {
var p = document.createElement("p");
p.innerHTML = text;
p.style.color = color;
document.body.appendChild(p);

}

// console.log can now be replaced with
output(assert.count + " tests OK", "#0c0");
// and, for failures:
output("Test failed: " + e.message, "#c00");

 From the Library of WoweBook.Com

ptg

1.3 Test Functions, Cases, and Suites 11

1.3 Test Functions, Cases, and Suites
The test we have built so far has several assertions, but because theassert function
throws an error when a test fails, we won’t know whether or not tests following a
failing test fail or succeed. For more fine-grained feedback, we can organize our test
into test functions. Each test function should exercise only one unit, but it may do
so using one or more assertions. For complete control, we can also require each test
to only test one specific behavior of a single unit. This means there will be many
tests for each function, but they’ll be short and easy to understand, and the test as
a whole will provide to-the-point feedback.

A set of related test functions/methods is referred to as a test case. In the case
of the strftime function, we can imagine a test case for the whole method, with
each test testing a specific behavior of the function through one or more assertions.
Test cases are usually organized in test suites in more complex systems. Listing 1.10
shows a very simple testCase function. It accepts a string name and an object
with test methods. Every property whose name starts with the word “test” is run as
a test method.

Listing 1.10 A simple testCase function

function testCase(name, tests) {
assert.count = 0;
var successful = 0;
var testCount = 0;

for (var test in tests) {
if (!/^test/.test(test)) {
continue;

}

testCount++;

try {
tests[test]();
output(test, "#0c0");
successful++;

} catch (e) {
output(test + " failed: " + e.message, "#c00");

}
}

var color = successful == testCount ? "#0c0" : "#c00";

 From the Library of WoweBook.Com

ptg

12 Automated Testing

output("" + testCount + " tests, " +
(testCount - successful) + " failures",
color);

}

Listing 1.11 uses testCase to restructure the strftime test into a test case.

Listing 1.11 strftime test case

var date = new Date(2009, 9, 2);

testCase("strftime test", {
"test format specifier %Y": function () {
assert("%Y should return full year",

date.strftime("%Y") === "2009");
},

"test format specifier %m": function () {
assert("%m should return month",

date.strftime("%m") === "10");
},

"test format specifier %d": function () {
assert("%d should return date",

date.strftime("%d") === "02");
},

"test format specifier %y": function () {
assert("%y should return year as two digits",

date.strftime("%y") === "09");
},

"test format shorthand %F": function () {
assert("%F should act as %Y-%m-%d",

date.strftime("%F") === "2009-10-02");
}

});

The tests have so far been distinct and simple enough that we end up with one
assertion in each test. The test case now groups all the tests into a single object, but
the date object is still being created outside, which is unnatural as it’s an integral
part of the test. We could create a new object inside each test, but since we can
create it the same way for all of them, that would lead to unnecessary duplication.
A better option would be to gather common setup code in a single place.

 From the Library of WoweBook.Com

ptg

1.3 Test Functions, Cases, and Suites 13

1.3.1 Setup and Teardown
xUnit frameworks usually provide setUp and tearDown methods. These are
called before and after each test method respectively, and allow for centralized
setup of test data, also known as test fixtures. Let’s add the date object as a test
fixture using the setUp method. Listing 1.12 shows the augmented testCase

function that checks if the test case has setUp and tearDown, and if so, runs
them at the appropriate times.

Listing 1.12 Implementing setUp and tearDown in testCase

function testCase(name, tests) {
assert.count = 0;
var successful = 0;
var testCount = 0;
var hasSetup = typeof tests.setUp == "function";
var hasTeardown = typeof tests.tearDown == "function";

for (var test in tests) {
if (!/^test/.test(test)) {
continue;

}

testCount++;

try {
if (hasSetup) {

tests.setUp();
}

tests[test]();
output(test, "#0c0");

if (hasTeardown) {
tests.tearDown();

}

// If the tearDown method throws an error, it is
// considered a test failure, so we don't count
// success until all methods have run successfully
successful++;

} catch (e) {
output(test + " failed: " + e.message, "#c00");

}
}

 From the Library of WoweBook.Com

ptg

14 Automated Testing

var color = successful == testCount ? "#0c0" : "#c00";

output("" + testCount + " tests, " +
(testCount - successful) + " failures",
color);

}

Using the new setUp method, we can add an object property to hold the test
fixture, as shown in Listing 1.13

Listing 1.13 Using setUp in the strftime test case

testCase("strftime test", {
setUp: function () {
this.date = new Date(2009, 9, 2, 22, 14, 45);

},

"test format specifier Y": function () {
assert("%Y should return full year",

this.date.strftime("%Y") == 2009);
},

// ...
});

1.4 Integration Tests
Consider a car manufacturer assembly line. Unit testing corresponds to verifying
each individual part of the car: the steering wheel, wheels, electric windows, and
so on. Integration testing corresponds to verifying that the resulting car works as
a whole, or that smaller groups of units behave as expected, e.g., making sure the
wheels turn when the steering wheel is rotated. Integration tests test the sum of its
parts. Ideally those parts are unit tested and known to work correctly in isolation.

Although high-level integration tests may require more capable tools, such as
software to automate the browser, it is quite possible to write many kinds of integra-
tion tests using a xUnit framework. In its simplest form, an integration test is a test
that exercises two or more individual components. In fact, the simplest integration
tests are so close to unit tests that they are often mistaken for unit tests.

In Listing 1.6 we fixed the “y” format specifier by zero padding the re-
sult of calling date.getYear(). This means that we passed a unit test for
Date.prototype.strftime by correcting Date.formats.y. Had the lat-
ter been a private/inner helper function, it would have been an implementation

 From the Library of WoweBook.Com

ptg

1.4 Integration Tests 15

detail of strftime, which would make that function the correct entry point to
test the behavior. However, because Date.formats.y is a publicly available
method, it should be considered a unit in its own right, which means that the afore-
mentioned test probably should have exercised it directly. To make this distinction
clearer, Listing 1.14 adds another format method, j, which calculates the day of the
year for a given date.

Listing 1.14 Calculating the day of the year

Date.formats = {
// ...

j: function (date) {
var jan1 = new Date(date.getFullYear(), 0, 1);
var diff = date.getTime() - jan1.getTime();

// 86400000 == 60 * 60 * 24 * 1000
return Math.ceil(diff / 86400000);

},

// ...
};

TheDate.formats.jmethod is slightly more complicated than the previous
formatting methods. How should we test it? Writing a test that asserts on the
result of new Date().strftime("%j") would hardly constitute a unit test
for Date.formats.j. In fact, following the previous definition of integration
tests, this sure looks like one: we’re testing both the strftime method as well as
the specific formatting. A better approach is to test the format specifiers directly,
and then test the replacing logic of strftime in isolation.

Listing 1.15 shows the tests targeting the methods they’re intended to test
directly, avoiding the “accidental integration test.”

Listing 1.15 Testing format specifiers directly

testCase("strftime test", {
setUp: function () {

this.date = new Date(2009, 9, 2, 22, 14, 45);
},

"test format specifier %Y": function () {
assert("%Y should return full year",

Date.formats.Y(this.date) === 2009);
},

 From the Library of WoweBook.Com

ptg

16 Automated Testing

"test format specifier %m": function () {
assert("%m should return month",

Date.formats.m(this.date) === "10");
},

"test format specifier %d": function () {
assert("%d should return date",

Date.formats.d(this.date) === "02");
},

"test format specifier %y": function () {
assert("%y should return year as two digits",

Date.formats.y(this.date) === "09");
},

"test format shorthand %F": function () {
assert("%F should be shortcut for %Y-%m-%d",

Date.formats.F === "%Y-%m-%d");
}

});

1.5 Benefits of Unit Tests
Writing tests is an investment. The most common objection to unit testing is that
it takes too much time. Of course testing your application takes time. But the
alternative to automated testing is usually not to avoid testing your application
completely. In the absence of tests, developers are left with a manual testing process,
which is highly inefficient: we write the same throwaway tests over and over again,
and we rarely rigorously test our code unless it’s shown to not work, or we otherwise
expect it to have defects. Automated testing allows us to write a test once and run
it as many times as we wish.

1.5.1 Regression Testing
Sometimes we make mistakes in our code. Those mistakes might lead to bugs that
sometimes find their way into production. Even worse, sometimes we fix a bug but
later have that same bug creep back out in production. Regression testing helps us
avoid this. By “trapping” a bug in a test, our test suite will notify us if the bug ever
makes a reappearance. Because automated tests are automated and reproducible,
we can run all our tests prior to pushing code into production to make sure that
past mistakes stay in the past. As a system grows in size and complexity, manual
regression testing quickly turns into an impossible feat.

 From the Library of WoweBook.Com

ptg

1.5 Benefits of Unit Tests 17

1.5.2 Refactoring
To refactor code is to change its implementation while leaving its behavior intact. As
with unit tests, you have likely done it whether you called it refactoring or not. If you
ever extracted a helper method from one method to reuse it in other methods, you
have done refactoring. Renaming objects and functions is refactoring. Refactoring
is vital to growing your application while preserving a good design, keeping it DRY
(Don’t Repeat Yourself) and being apt to adopt changing requirements.

The failure points in refactoring are many. If you’re renaming a method, you
need to be sure all references to that method have changed. If you’re copy-pasting
some code from a method into a shared helper, you need to pay attention to such
details as any local variables used in the original implementation.

In his book Refactoring: Improving the Design of Existing Code [1], Martin
Fowler describes the first step while refactoring the following way: “Build a solid
set of tests for the section of code to be changed.” Without tests you have no reliable
metric that can tell you whether or not the refactoring was successful, and that new
bugs weren’t introduced. In the undying words of Hamlet D’Arcy, “don’t touch
anything that doesn’t have coverage. Otherwise, you’re not refactoring; you’re just
changing shit.”[2]

1.5.3 Cross-Browser Testing
As web developers we develop code that is expected to run on a vast combination of
platforms and user agents. Leveraging unit tests, we can greatly reduce the required
effort to verify that our code works in different environments.

Take our example of the strftimemethod. Testing it the ad hoc way involves
firing up a bunch of browsers, visiting a web page that uses the method and manually
verifying that the dates are displayed correctly. If we want to test closer to the code in
question, we might bring up the browser console as we did in Section 1.1, The Unit
Test, and perform some tests on the fly. Testing strftime using unit tests simply
requires us to run the unit test we already wrote in all the target environments.
Given a clever test runner with a bunch of user agents readily awaiting our tests,
this might be as simple as issuing a single command in a shell or hitting a button in
our integrated development environment (IDE).

1.5.4 Other Benefits
Well-written tests serve as good documentation of the underlying interfaces. Short
and focused unit tests can help new developers quickly get to know the system being

 From the Library of WoweBook.Com

ptg

18 Automated Testing

developed by perusing the tests. This point is reinforced by the fact that unit tests
also help us write cleaner interfaces, because the tests force us to use the interfaces as
we write them, providing us with shorter feedback loops. As we’ll see in Chapter 2,
The Test-Driven Development Process, one of the strongest benefits of unit tests is
their use as a design tool.

1.6 Pitfalls of Unit Testing
Writing unit tests is not always easy. In particular, writing good unit tests takes
practice, and can be challenging. The benefits listed in Section 1.5, Benefits of Unit
Tests all assume that unit tests are implemented following best practices. If you write
bad unit tests, you might find that you gain none of the benefits, and instead are
stuck with a bunch of tests that are time-consuming and hard to maintain.

In order to write truly great unit tests, the code you’re testing needs to be
testable. If you ever find yourself retrofitting a test suite onto an existing application
that was not written with testing in mind, you’ll invariably discover that parts of
the application will be challenging, if not impossible, to test. As it turns out, testing
units in isolation helps expose too tightly coupled code and promotes separation of
concerns.

Throughout this book I will show you, through examples, characteristics of
testable code and good unit tests that allow you to harness the benefits of unit
testing and test-driven development.

1.7 Summary
In this chapter we have seen the similarities between some of the ad hoc testing we
perform in browser consoles and structured, reproducible unit tests. We’ve gotten
to know the most important parts of the xUnit testing frameworks: test cases, test
methods, assertions, test fixtures, and how to run them through a test runner. We
implemented a crude proof of concept xUnit framework to test the initial attempt
at a strftime implementation for JavaScript.

Integration tests were also dealt with briefly in this chapter, specifically how we
can realize them using said xUnit frameworks. We also looked into how integration
tests and unit tests often can get mixed up, and how we usually can tell them apart
by looking at whether or not they test isolated components of the application.

When looking at benefits of unit testing we see how unit testing is an investment,
how tests save us time in the long run, and how they help execute regression tests.
Additionally, refactoring is hard, if not impossible, to do reliably without tests.

 From the Library of WoweBook.Com

ptg

1.7 Summary 19

Writing tests before refactoring greatly reduces the risk, and those same tests can
make cross-browser testing considerably easier.

In Chapter 2, The Test-Driven Development Process, we’ll continue our explo-
ration of unit tests. We’ll focus on benefits not discussed in this chapter: unit tests
as a design tool, and using unit tests as the primary driver for writing new code.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

2The Test-Driven
Development Process

In Chapter 1, Automated Testing, we were introduced to the unit test, and learned
how it can help reduce the number of defects, catch regressions, and increase de-
veloper productivity by reducing the need to manually test and tinker with code. In
this chapter we are going to turn our focus from testing to specification as we delve
into test-driven development. Test-driven development (TDD) is a programming
technique that moves unit tests to the front row, making them the primary entry
point to production code. In test-driven development tests are written as specifica-
tion before writing production code. This practice has a host of benefits, including
better testability, cleaner interfaces, and improved developer confidence.

2.1 Goal and Purpose of Test-Driven Development
In his book, Test-Driven Development By Example[3], Kent Beck states that the goal
of test-driven development is Clean code that works. TDD is an iterative develop-
ment process in which each iteration starts by writing a test that forms a part of
the specification we are implementing. The short iterations allow for more instant
feedback on the code we are writing, and bad design decisions are easier to catch.
By writing the tests before any production code, good unit test coverage comes with
the territory, but that is merely a welcome side effect.

21

 From the Library of WoweBook.Com

ptg

22 The Test-Driven Development Process

2.1.1 Turning Development Upside-Down
In traditional programming problems are solved by programming until a concept is
fully represented in code. Ideally, the code follows some overall architectural design
considerations, although in many cases, perhaps especially in the world of JavaScript,
this is not the case. This style of programming solves problems by guessing at what
code is required to solve them, a strategy that can easily lead to bloated and tightly
coupled solutions. If there are no unit tests as well, solutions produced with this
approach may even contain code that is never executed, such as error handling
logic, and edge cases may not have been thoroughly tested, if tested at all.

Test-driven development turns the development cycle upside-down. Rather than
focusing on what code is required to solve a problem, test-driven development starts
by defining the goal. Unit tests form both the specification and documentation for
what actions are supported and accounted for. Granted, the goal of TDD is not
testing and so there is no guarantee that it handles edge cases better. However,
because each line of code is tested by a representative piece of sample code, TDD
is likely to produce less excessive code, and the functionality that is accounted for
is likely to be more robust. Proper test-driven development ensures that a system
will never contain code that is not being executed.

2.1.2 Design in Test-Driven Development
In test-driven development there is no “Big Design Up Front,” but do not mistake
that for “no design up front.” In order to write clean code that is able to scale across
the duration of a project and its lifetime beyond, we need to have a plan. TDD
will not automatically make great designs appear out of nowhere, but it will help
evolve designs as we go. By relying on unit tests, the TDD process focuses heavily on
individual components in isolation. This focus goes a long way in helping to write
decoupled code, honor the single responsibility principle, and to avoid unnecessary
bloat. The tight control over the development process provided by TDD allows for
many design decisions to be deferred until they are actually needed. This makes it
easier to cope with changing requirements, because we rarely design features that
are not needed after all, or never needed as initially expected.

Test-driven development also forces us to deal with design. Anytime a new
feature is up for addition, we start by formulating a reasonable use case in the form
of a unit test. Writing the unit test requires a mental exercise—we must describe the
problem we are trying to solve. Only when we have done that can we actually start
coding. In other words, TDD requires us to think about the results before providing
the solution. We will investigate what kind of benefits we can reap from this process

 From the Library of WoweBook.Com

ptg

2.2 The Process 23

in Section 2.4, Benefits of Test-Driven Development, once we have gotten to know
the process itself better.

2.2 The Process
The test-driven development process is an iterative process where each iteration
consists of the following four steps:

• Write a test

• Run tests; watch the new test fail

• Make the test pass

• Refactor to remove duplication

In each iteration the test is the specification. Once enough production code has
been written to make the test pass, we are done, and we may refactor the code to
remove duplication and/or improve the design, as long as the tests still pass.

Even though there is no Big Design Up Front when doing TDD, we must invest
time in some design before launching a TDD session. Design will not appear out
of nowhere, and without any up front design at all, how will you even know how
to write the first test? Once we have gathered enough knowledge to formulate a
test, writing the test itself is an act of design. We are specifying how a certain piece
of code needs to behave in certain circumstances, how responsibility is delegated
between components of the system, and how they will integrate with each other.
Throughout this book we will work through several examples of test-driven code
in practice, seeing some examples on what kind of up front investment is required
in different scenarios.

The iterations in TDD are short, typically only a few minutes, if that. It is
important to stay focused and keep in mind what phase we are in. Whenever we
spot something in the code that needs to change, or some feature that is missing, we
make a note of it and finish the iteration before dealing with it. Many developers,
including myself, keep a simple to do list for those kind of observations. Before
starting a new iteration, we pick a task from the to do list. The to do list may be a
simple sheet of paper, or something digital. It doesn’t really matter; the important
thing is that new items can be quickly and painlessly added. Personally, I use Emacs
org-mode to keep to do files for all of my projects. This makes sense because I spend
my entire day working in Emacs, and accessing the to do list is a simple key binding
away. An entry in the to do list may be something small, such as “throw an error
for missing arguments,” or something more complex that can be broken down into
several tests later.

 From the Library of WoweBook.Com

ptg

24 The Test-Driven Development Process

2.2.1 Step 1: Write a Test
The first formal step of a test-driven development iteration is picking a feature to
implement, and writing a unit test for it. As we discussed in Chapter 1, Automated
Testing, a good unit test should be short and focus on a single behavior of a function/
method. A good rule of thumb to writing single behavior tests is to add as little code
as necessary to fail the test. Also, the new test should never duplicate assertions that
have already been found to work. If a test is exercising two or more aspects of the
system, we have either added more than the necessary amount of code to fail it, or
it is testing something that has already been tested.

Beware of tests that make assumptions on, or state expectations about the
implementation. Tests should describe the interface of whatever it is we are imple-
menting, and it should not be necessary to change them unless the interface itself
changes.

Assume we are implementing a String.prototype.trim method, i.e., a
method available on string objects that remove leading and trailing white-space.
A good first test for such a method could be to assert that leading white space is
removed, as shown in Listing 2.1.

Listing 2.1 Initial test for String.prototype.trim

testCase("String trim test", {
"test trim should remove leading white-space":
function () {
assert("should remove leading white-space",

"a string" === " a string".trim());
}

});

Being pedantic about it, we could start even smaller by writing a test to ensure
strings have a trim method to begin with. This may seem silly, but given that
we are adding a global method (by altering a global object), there is a chance of
conflicts with third party code, and starting by asserting that typeof "".trim

== "function" will help us discover any problems when we run the test before
passing it.

Unit tests test that our code behaves in expected ways by feeding them known
input and asserting that the output is what we expect. “Input” in this sense is not
merely function arguments. Anything the function in question relies on, including
the global scope, certain state of certain objects, and so on constitute input. Likewise,
output is the sum of return values and changes in the global scope or surrounding
objects. Often input and output are divided into direct inputs and outputs, i.e.,

 From the Library of WoweBook.Com

ptg

2.2 The Process 25

function arguments and return value, and indirect inputs and outputs, i.e., any
object not passed as arguments or modifications to outside objects.

2.2.2 Step 2: Watch the Test Fail
As soon as the test is ready, we run it. Knowing it’s going to fail may make this
step feel redundant. After all, we wrote it specifically to fail, didn’t we? There are
a number of reasons to run the test before writing the passing code. The most
important reason is that it allows us to confirm our theories about the current state
of our code. While writing the test, there should be a clear expectation on how the
test is going to fail. Unit tests are code too, and just like other code it may contain
bugs. However, because unit tests should never contain branching logic, and rarely
contain anything other than a few lines of simple statements, bugs are less likely, but
they still occur. Running the test with an expectation on what is going to happen
greatly increases the chance of catching bugs in the tests themselves.

Ideally, running the tests should be fast enough to allow us to run all the tests
each time we add a new one. Doing this makes it easier to catch interfering tests,
i.e., where one test depends on the presence of another test, or fails in the presence
of another test.

Running the test before writing the passing code may also teach us something
new about the code we are writing. In some cases we may experience that a test
passes before we have written any code at all. Normally, this should not happen,
because TDD only instructs us to add tests we expect to fail, but nevertheless, it may
occur. A test may pass because we added a test for a requirement that is implicitly
supported by our implementation, for instance, due to type coercion. When this
happens we can remove the test, or keep it in as a stated requirement. It is also
possible that a test will pass because the current environment already supports
whatever it is we are trying to add. Had we run the String.prototype.trim
method test in Firefox, we would discover that Firefox (as well as other browsers)
already support this method, prompting us to implement the method in a way that
preserves the native implementation when it exists.1 Such a discovery is a good to
do list candidate. Right now we are in the process of adding the trim method.
We will make a note that a new requirement is to preserve native implementations
where they exist.

1. In fact, ECMAScript 5, the latest edition of the specification behind JavaScript, codifies String.
prototype.trim, so we can expect it to be available in all browsers in the not-so-distant future.

 From the Library of WoweBook.Com

ptg

26 The Test-Driven Development Process

2.2.3 Step 3: Make the Test Pass
Once we have confirmed that the test fails, and that it fails in the expected way,
we have work to do. At this point test-driven development instructs us to provide
the simplest solution that could possibly work. In other words, our only goal is to
make the tests green, by any means necessary, occasionally even by hard-coding. No
matter how messy a solution we provide in this step, refactoring and subsequent
steps will help us sort it out eventually. Don’t fear hard-coding. There is a certain
rhythm to the test-driven development process, and the power of getting through
an iteration even though the provided solution is not perfect at the moment should
not be underestimated. Usually we make a quick judgement call: is there an obvious
implementation? If there is, go with it; if there isn’t, fake it, and further steps
will gradually make the implementation obvious. Deferring the real solution may
also provide enough insight to help solve the problem in a better way at a later
point.

If there is an obvious solution to a test, we can go ahead and implement it. But
we must remember to only add enough code to make the test pass, even when we
feel that the greater picture is just as obvious. These are the “insights” I was talking
about in Section 2.2, The Process, and we should make a note of it and add it in
another iteration. Adding more code means adding behavior, and added behavior
should be represented by added requirements. If a piece of code cannot be backed
up by a clear requirement, it’s nothing more than bloat, bloat that will cost us by
making code harder to read, harder to maintain, and harder to keep stable.

2.2.3.1 You Ain’t Gonna Need It

In extreme programming, the software development methodology from which test-
driven development stems, “you ain’t gonna need it,” or YAGNI for short, is the
principle that we should not add functionality until it is necessary [4]. Adding code
under the assumption that it will do us good some day is adding bloat to the code base
without a clear use case demonstrating the need for it. In a dynamic language such
as JavaScript, it is especially tempting to violate this principle in the face of added
flexibility. One example of a YAGNI violation I personally have committed more
than once is to be overly flexible on method arguments. Just because a JavaScript
function can accept a variable amount of arguments of any type does not mean every
function should cater for any combination of arguments possible. Until there is a
test that demonstrates a reasonable use for the added code, don’t add it. At best,
we can write down such ideas on the to do list, and prioritize it before launching a
new iteration.

 From the Library of WoweBook.Com

ptg

2.2 The Process 27

2.2.3.2 Passing the Test for String.prototype.trim

As an example of the simplest solution that could possibly work, Listing 2.2 shows
the sufficient amount of code to pass the test in Listing 2.1. It caters only to the
case stated in that original test, leaving the rest of the requirements for following
iterations.

Listing 2.2 Providing a String.prototype.trim method

String.prototype.trim = function () {
return this.replace(/^\s+/, "");

};

The keen reader will probably spot several shortcomings in this method, in-
cluding overwriting native implementations and only trimming left side white space.
Once we are more confident in the process and the code we are writing, we can take
bigger steps, but it’s comforting to know that test-driven development allows for
such small steps. Small steps can be an incredible boon when treading unfamiliar
ground, when working with error prone methods, or when dealing with code that
is highly unstable across browsers.

2.2.3.3 The Simplest Solution that Could Possibly Work

The simplest solution that could possibly work will sometimes be to hard-code
values into production code. In cases where the generalized implementation is not
immediately obvious, this can help move on quickly. However, for each test we
should come up with some production code that signifies progress. In other words,
although the simplest solution that could possibly work will sometimes be hard-
coding values once, twice and maybe even three times, simply hard-coding a locked
set of input/output does not signify progress. Hard-coding can form useful scaf-
folding to move on quickly, but the goal is to efficiently produce quality code, so
generalizations are unavoidable.

The fact that TDD says it is OK to hard-code is something that worries a lot
of developers unfamiliar with the technique. This should not at all be alarming so
long as the technique is fully understood. TDD does not tell us to ship hard-coded
solutions, but it allows them as an intermediary solution to keep the pace rather than
spending too much time forcing a more generalized solution when we can see none.
While reviewing the progress so far and performing refactoring, better solutions
may jump out at us. When they don’t, adding more use cases usually helps us pick
up an underlying pattern. We will see examples of using hard coded solutions to
keep up the pace in Part III, Real-World Test-Driven Development in JavaScript.

 From the Library of WoweBook.Com

ptg

28 The Test-Driven Development Process

2.2.4 Step 4: Refactor to Remove Duplication
The last phase is the most important one in the interest of writing clean code. When
enough code has been written to pass all the tests, it’s time to review the work so far
and make necessary adjustments to remove duplication and improve design. There
is only one rule to obey during this phase: tests should stay green. Some good advice
when refactoring code is to never perform more than one operation at a time, and
make sure that the tests stay green between each operation. Remember, refactoring
is changing the implementation while maintaining the same interface, so there is no
need to fail tests at this point (unless we make mistakes, of course, in which case
tests are especially valuable).

Duplication can occur in any number of places. The most obvious place to
look is in the production code. Often, duplication is what helps us generalize from
hard-coded solutions. If we start an implementation by faking it and hard-coding a
response, the natural next step is to add another test, with different input, that fails
in the face of the hard-coded response. If doing so does not immediately prompt
us to generalize the solution, adding another hard-coded response will make the
duplication obvious. The hard-coded responses may provide enough of a pattern
to generalize it and extract a real solution.

Duplication can also appear inside tests, especially in the setup of the required
objects to carry out the test, or faking its dependencies. Duplication is no more
attractive in tests than it is in production code, and it represents a too tight coupling
to the system under test. If the tests and the system are too tightly coupled, we
can extract helper methods or perform other refactorings as necessary to keep
duplication away. Setup and teardown methods can help centralize object creation
and destruction. Tests are code, too, and need maintenance as well. Make sure
maintaining them is as cheap and enjoyable as possible.

Sometimes a design can be improved by refactoring the interface itself. Doing
so will often require bigger changes, both in production and test code, and running
the tests between each step is of utmost importance. As long as duplication is dealt
with swiftly throughout the process, changing interfaces should not cause too much
of a domino effect in either your code or tests.

We should never leave the refactoring phase with failing tests. If we cannot
accomplish a refactoring without adding more code to support it (i.e., we want to
split a method in two, but the current solution does not completely overlap the
functionality of both the two new methods), we should consider putting it off until
we have run through enough iterations to support the required functionality, and
then refactor.

 From the Library of WoweBook.Com

ptg

2.3 Facilitating Test-Driven Development 29

2.2.5 Lather, Rinse, Repeat
Once refactoring is completed, and there is no more duplication to remove or
improvements to be made to design, we are done. Pick a new task off the to do list
and repeat the process. Repeat as many times as necessary. As you grow confident
in the process and the code, you may want to start taking bigger steps, but keep
in mind that you want to have short cycles in order to keep the frequent feedback.
Taking too big steps lessens the value of the process because you will hit many of the
problems we are trying to avoid, such as hard to trace bugs and manual debugging.
When you are done for the day, leave one test failing so you know where to pick up
the next day.

When there are no more tests to write, the implementation is done—it fulfills
all its requirements. At this point we might want to write some more tests, this time
focusing on improving test coverage. Test-driven development by nature will ensure
that every line of code is tested, but it does not necessarily yield a sufficiently strong
test suite. When all requirements are met, we can typically work on tests that further
tests edge cases, more types of input, and most importantly, we can write integration
tests between the newly written component and any dependencies that have been
faked during development.

The string trim method has so far only been proven to remove leading white
space. The next step in the test-driven development process for this method would
be to test that trailing white space is being trimmed, as shown in Listing 2.3.

Listing 2.3 Second test for String.prototype.trim

"test trim should remove trailing white-space":
function () {
assert("should remove trailing white-space",

"a string" === "a string ".trim());
}

Now it’s your turn; go ahead and complete this step by running the test, making
necessary changes to the code and finally looking for refactoring possibilities in
either the code or the test.

2.3 Facilitating Test-Driven Development
The most crucial aspect of test-driven development is running tests. The tests need
to run fast, and they need to be easy to run. If this is not the case, developers start to
skip running tests every now and then, quickly adding some features not tested for,

 From the Library of WoweBook.Com

ptg

30 The Test-Driven Development Process

and generally making a mess of the process. This is the worst kind of situation to
be in—investing extra time in test-driven development, but because it is not being
done right we cannot really trust the outcome the way we are supposed to, and in
the worst case we will end up spending more time writing worse code. Smoothly
running tests are key.

The recommended approach is to run some form of autotest. Autotesting means
that tests are run every single time a file is saved. A small discrete indicator light
can tell us if tests are green, currently running, or red. Given that big monitors are
common these days, you may even allocate some screen real-estate for a permanent
test output window. This way we can speed up the process even more because we are
not actively running the tests. Running the tests is more of a job for the environment;
we only need to be involved when results are in. Keep in mind though that we still
need to inspect the results when tests are failing. However, as long as the tests are
green, we are free to hack voraciously away. Autotesting can be used this way to
speed up refactoring, in which we aren’t expecting tests to fail (unless mistakes are
made). We’ll discuss autotesting for both IDEs and the command line in Chapter 3,
Tools of the Trade.

2.4 Benefits of Test-Driven Development
In the introduction to this chapter we touched on some of the benefits that test-
driven development facilitates. In this section we will rehash some of them and
touch on a few others as well.

2.4.1 Code that Works
The strongest benefit of TDD is that it produces code that works. A basic line-by-
line unit test coverage goes a long way in ensuring the stability of a piece of code.
Reproducible unit tests are particularly useful in JavaScript, in which we might need
to test code on a wide range of browser/platform combinations. Because the tests
are written to address only a single concern at a time, bugs should be easy to discover
using the test suite, because the failing tests will point out which parts of the code
are not working.

2.4.2 Honoring the Single Responsibility Principle
Describing and developing specialized components in isolation makes it a lot eas-
ier to write code that is loosely coupled and that honors the single responsibility
principle. Unit tests written in TDD should never test a component’s dependencies,
which means they must be possible to replace with fakes. Additionally, the test suite

 From the Library of WoweBook.Com

ptg

2.5 Summary 31

serves as an additional client to any code in addition to the application as a whole.
Serving two clients makes it easier to spot tight coupling than writing for only a
single use case.

2.4.3 Forcing Conscious Development
Because each iteration starts by writing a test that describes a particular behavior,
test-driven development forces us to think about our code before writing it. Thinking
about a problem before trying to solve it greatly increases the chances of producing a
solid solution. Starting each feature by describing it through a representative use case
also tends to keep the code smaller. There is less chance of introducing features that
no one needs when we start from real examples of code use. Remember, YAGNI!

2.4.4 Productivity Boost
If test-driven development is new to you, all the tests and steps may seem like they
require a lot of your time. I won’t pretend TDD is easy from the get go. Writing
good unit tests takes practice. Throughout this book you will see enough examples
to catch some patterns of good unit tests, and if you code along with them and solve
the exercises given in Part III, Real-World Test-Driven Development in JavaScript,
you will gain a good foundation to start your own TDD projects. When you are in
the habit of TDD, it will improve your productivity. You will probably spend a little
more time in your editor writing tests and code, but you will also spend considerably
less time in a browser hammering the F5 key. On top of that, you will produce code
that can be proven to work, and covered by tests, refactoring will no longer be a
scary feat. You will work faster, with less stress, and with more happiness.

2.5 Summary
In this chapter we have familiarized ourselves with Test-Driven Development, the
iterative programming technique borrowed from Extreme Programming. We have
walked through each step of each iteration: writing tests to specify a new behavior
in the system, running it to confirm that it fails in the expected way, writing just
enough code to pass the test, and then finally aggressively refactoring to remove
duplication and improve design. Test-driven development is a technique designed
to help produce clean code we can feel more confident in, and it will very likely
reduce stress levels as well help you enjoy coding a lot more. In Chapter 3, Tools
of the Trade, we will take a closer look at some of the testing frameworks that are
available for JavaScript.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

3Tools of the Trade

In Chapter 1, Automated Testing, we developed a very simple testCase

function, capable of running basic unit tests with test case setup and teardown
methods. Although rolling our own test framework is a great exercise, there are
many frameworks already available for JavaScript and this chapter explores a few
of them.

In this chapter we will take a look at “the tools of the trade”—essential and
useful tools to support a test-driven workflow. The most important tool is of course
the testing framework, and after an overview of available frameworks, we will spend
some time setting up and running JsTestDriver, the testing framework used for most
of this book’s example code. In addition to a testing framework, this chapter looks
at tools such as coverage reports and continuous integration.

3.1 xUnit Test Frameworks
In Chapter 1, Automated Testing, we coined xUnit as the term used to describe
testing frameworks that lean on the design of Java’s JUnit and Smalltalk’s SUnit,
originally designed by Kent Beck. The xUnit family of test frameworks is still the
most prevalent way of writing automated tests for code, even though the past few
years have seen a rise in usage for so-called behavior-driven development (or BDD)
testing frameworks.

33

 From the Library of WoweBook.Com

ptg

34 Tools of the Trade

3.1.1 Behavior-Driven Development
Behavior-driven development, or BDD, is closely related to TDD. As discussed in
Chapter 2, The Test-Driven Development Process, TDD is not about testing, but
rather about design and process. However, due to the terminology used to describe
the process, a lot of developers never evolve beyond the point where they simply
write unit tests to verify their code, and thus never experience many of the advantages
associated with using tests as a design tool. BDD seeks to ease this realization
by focusing on an improved vocabulary. In fact, vocabulary is perhaps the most
important aspect of BDD, because it also tries to normalize the vocabulary used by
programmers, business developers, testers, and others involved in the development
of a system when discussing problems, requirements, and solutions.

Another “double D” is Acceptance Test-Driven Development. In acceptance
TDD, development starts by writing automated tests for high level features, based
on acceptance tests defined in conjunction with the client. The goal is to pass
the acceptance tests. To get there, we can identify smaller parts and proceed with
“regular” TDD. In BDD this process is usually centered around user stories, which
describe interaction with the system using a vocabulary familiar to everyone involved
in the project. BDD frameworks such as Cucumber allow for user stories to be used
as executable tests, meaning that acceptance tests can be written together with
the client, increasing the chance of delivering the product the client had originally
envisioned.

3.1.2 Continuous Integration
Continuous integration is the practice of integrating code from all developers on
a regular basis, usually every time a developer pushes code to a remote version
control repository. The continuous integration server typically builds all the sources
and then runs tests for them. This process ensures that even when developers work
on isolated units of features, the integrated whole is considered every time code
is committed to the upstream repository. JavaScript does not need compiling, but
running the entire test suite for the application on a regular basis can help catch
errors early.

Continuous integration for JavaScript can solve tasks that are impractical for
developers to perform regularly. Running the entire test suite in a wide array of
browser and platform combinations is one such task. Developers working with
TDD can focus their attention on a small representative selection of browsers,
while the continuous integration server can test much wider, alerting the team of
errors by email or RSS.

 From the Library of WoweBook.Com

ptg

3.1 xUnit Test Frameworks 35

Additionally, it is common practice for JavaScript to be served minified—i.e.,
with unneeded white-space and comments stripped out, and optionally local identi-
fiers munged to occupy fewer bytes—to preserve bytes over the wire. Both minifying
code too aggressively or merging files incorrectly can introduce bugs. A continuous
integration server can help out with these kinds of problems by running all tests
on the full source as well as building concatenated and minified release files and
re-running the test suite for them.

3.1.3 Asynchronous Tests
Due to the asynchronous nature of many JavaScript programming tasks such as
working with XMLHttpRequest, animations and other deferred actions (i.e., any
code using setTimeout or setInterval), and the fact that browsers do not
offer a sleep function (because it would freeze the user interface), many testing
frameworks provide a means to execute asynchronous tests. Whether or not asyn-
chronous unit tests is a good idea is up for discussion. Chapter 12, Abstracting
Browser Differences: Ajax, offers a more thorough discussion on the subject as well
as an example.

3.1.4 Features of xUnit Test Frameworks
Chapter 1, Automated Testing, already introduced us to the basic features of the
xUnit test frameworks: Given a set of test methods, the framework provides a test
runner that can run them and report back the results. To ease the creation of shared
test fixtures, test cases can employ the setUp and tearDown functions, which are
run before and after (respectively) each individual test in a test case. Additionally,
the test framework provides a set of assertions that can be used to verify the state of
the system being tested. So far we have only used theassertmethod which accepts
any value and throws an exception when the value is falsy. Most frameworks provide
more assertions that help make tests more expressive. Perhaps the most common
assertion is a version of assertEqual, used to compare actual results against
expected values.

When evaluating test frameworks, we should assess the framework’s test runner,
its assertions, and its dependencies.

3.1.4.1 The Test Runner

The test runner is the most important part of the testing framework because it
basically dictates the workflow. For example, most unit testing frameworks available
for JavaScript today use an in-browser test runner. This means that tests must
run inside a browser by loading an HTML file (often referred to as an HTML

 From the Library of WoweBook.Com

ptg

36 Tools of the Trade

fixture) that itself loads the libraries to test, along with the unit tests and the testing
framework. Other types of test runners can run in other environments, e.g., using
Mozilla’s Rhino implementation to run tests on the command line. What kind of
test runner is suitable to test a specific application depends on whether it is a client-
side application, server-side, or maybe even a browser plugin (an example of which
would be FireUnit, a unit testing framework that uses Firebug and is suitable for
developing Firefox plugins).

A related concern is the test report. Clear fail/success status is vital to the
test-driven development process, and clear feedback with details when tests fail or
have errors is needed to easily handle them as they occur. Ideally, the test runner
should produce test results that are easily integrated with continuous integration
software.

Additionally, some sort of plugin architecture for the test runner can enable us
to gather metrics from testing, or otherwise allow us to extend the runner to improve
the workflow. An example of such a plugin is the test coverage report. A coverage
report shows how well the test suite covers the system by measuring how many lines
in production code are executed by tests. Note that 100% coverage does not imply
that every thinkable test is written, but rather that the test suite executes each and
every line of production code. Even with 100% coverage, certain sets of input can
still break the code—it cannot guarantee the absence of, e.g., missing error handling.
Coverage reports are useful to find code that is not being exercised by tests.

3.1.5 Assertions
A rich set of assertions can really boost the expressiveness of tests. Given that a good
unit test clearly states its intent, this is a massive boon. It’s a lot easier to spot what
a test is targeting if it compares two values with assertEqual(expected,

actual) rather than with assert(expected == actual). Although
assert is all we really need to get the job done, more specific assertions make
test code easier to read, easier to maintain, and easier to debug.

Assertions is one aspect where an exact port of the xUnit framework design
from, e.g., Java leaves a little to be desired. To achieve good expressiveness in tests,
it’s helpful to have assertions tailored to specific language features, for instance,
having assertions to handle JavaScripts special values such as undefined, NaN
and infinity. Many other assertions can be provided to better support testing
JavaScript, not just some arbitrary programming language. Luckily, specific asser-
tions like those mentioned are easy to write piggybacking a general purposeassert
(or, as is common, a fail method that can be called when the assertion does not
hold).

 From the Library of WoweBook.Com

ptg

3.2 In-Browser Test Frameworks 37

3.1.6 Dependencies
Ideally, a testing framework should have as few dependencies as possible. More
dependencies increase the chance of the mechanics of the framework not working
in some browser (typically older ones). The worst kind of dependency for a testing
framework is an obtrusive library that tampers with the global scope. The original
version of JsUnitTest, the testing framework built for and used by the Prototype.js
library, depended on Prototype.js itself, which not only adds a number of global
properties but also augments a host of global constructors and objects. In practice,
using it to test code that was not developed with Prototype.js would prove a futile
exercise for two reasons:

• Too easy to accidentally rely on Prototype.js through the testing framework
(yielding green tests for code that would fail in production, where
Prototype.js would not be available)

• Too high a risk for collisions in the global scope (e.g., the MooTools library
adds many of the same global properties)

3.2 In-Browser Test Frameworks
The original JavaScript port of the JUnit framework was JsUnit, first released in
2001. Not surprisingly, it has in many ways set the standard for a lot of testing
frameworks following it. JsUnit runs tests in a browser: The test runner prompts
for the URL to a test file to execute. The test file may be an HTML test suite which
links to several test cases to execute. The tests are then run in sandboxed frames,
and a green progress bar is displayed while tests are running. Obviously, the bar
turns red whenever a test fails. JsUnit still sees the occasional update, but it has not
been significantly updated for a long time, and it’s starting to lag behind. JsUnit
has served many developers well, including myself, but there are more mature and
up-to-date alternatives available today.

Common for the in-browser testing frameworks is how they require an HTML
fixture file to load the files to test, the testing library (usually a JavaScript and a CSS
file), as well as the tests to run. Usually, the fixture can be simply copy-pasted for
each new test case. The HTML fixture also serves the purpose of hosting dummy
markup needed for the unit tests. If tests don’t require such markup, we can lessen
the burden of keeping a separate HTML file for each test case by writing a script
that scans the URL for parameters naming library and test files to load, and then
load them dynamically. This way we can run several test cases from the same HTML
fixture simply by modifying the URL query string. The fixture could of course also
be generated by a server-side application, but be careful down this route. I advise you

 From the Library of WoweBook.Com

ptg

38 Tools of the Trade

to keep things simple—complicated test runners greatly decreases the likelihood of
developers running tests.

3.2.1 YUI Test
Most of the major JavaScript libraries available today have their own unit testing
framework. YUI from Yahoo! is no exception. YUI Test 3 can be safely used to
test arbitrary JavaScript code (i.e., it has no obtrusive dependencies). YUI Test is,
in its own words, “not a direct port from any specific xUnit framework,” but it
“does derive some characteristics from nUnit and JUnit,” with nUnit being the
.NET interpretation of the xUnit family of frameworks, written in C#. YUI Test is a
mature testing framework with a rich feature set. It supports a rich set of assertions,
test suites, a mocking library (as of YUI 3), and asynchronous tests.

3.2.1.1 Setup

Setup is very easy thanks to YUI’s loader utility. To get quickly started, we can link
directly to the YUI seed file on the YUI server, and use YUI.use to fetch the
necessary dependencies. We will revisit the strftime example from Chapter 1,
Automated Testing, in order to compare YUI Test to the testCase function in-
troduced in that chapter. Listing 3.1 shows the HTML fixture file, which can be
saved in, e.g., strftime_yui_test.html.

Listing 3.1 YUI Test HTML fixture file

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>Testing Date.prototype.strftime with YUI</title>
<meta http-equiv="content-type"

content="text/html; charset=UTF-8">
</head>
<body class="yui-skin-sam">
<div id="yui-main"><div id="testReport"></div></div>
<script type="text/javascript"

src="http://yui.yahooapis.com/3.0.0/build/yui/yui-min.js">
</script>
<script type="text/javascript" src="strftime.js">
</script>
<script type="text/javascript" src="strftime_test.js">
</script>

</body>
</html>

 From the Library of WoweBook.Com

ptg

3.2 In-Browser Test Frameworks 39

The strftime.js file contains the Date.prototype.strftime imple-
mentation presented in Listing 1.2 in Chapter 1, Automated Testing. Listing 3.2
shows the test script, save it in strftime_test.js.

Listing 3.2 Date.prototype.strftime YUI test case

YUI({
combine: true,
timeout: 10000

}).use("node", "console", "test", function (Y) {
var assert = Y.Assert;

var strftimeTestCase = new Y.Test.Case({
// test case name - if not provided, one is generated
name: "Date.prototype.strftime Tests",

setUp: function () {
this.date = new Date(2009, 9, 2, 22, 14, 45);

},

tearDown: function () {
delete this.date;

},

"test %Y should return full year": function () {
var year = Date.formats.Y(this.date);

assert.isNumber(year);
assert.areEqual(2009, year);

},

"test %m should return month": function () {
var month = Date.formats.m(this.date);

assert.isString(month);
assert.areEqual("10", month);

},

"test %d should return date": function () {
assert.areEqual("02", Date.formats.d(this.date));

},

"test %y should return year as two digits": function () {
assert.areEqual("09", Date.formats.y(this.date));

},

 From the Library of WoweBook.Com

ptg

40 Tools of the Trade

"test %F should act as %Y-%m-%d": function () {
assert.areEqual("2009-10-02", this.date.strftime("%F"));

}
});

//create the console
var r = new Y.Console({
newestOnTop : false,
style: 'block'

});

r.render("#testReport");
Y.Test.Runner.add(strftimeTestCase);
Y.Test.Runner.run();

});

When using YUI Test for production code, the required sources should be
downloaded locally. Although the loader is a convenient way to get started, relying
on an internet connection to run tests is bad practice because it means we cannot
run tests while offline.

3.2.1.2 Running Tests

Running tests with YUI Test is as simple as loading up the HTML fixture in a
browser (preferably several browsers) and watching the output in the console, as
seen in Figure 3.1.

3.2.2 Other In-Browser Testing Frameworks
When choosing an in-browser testing framework, options are vast. YUI Test is
among the most popular choices along with JsUnit and QUnit. As mentioned,
JsUnit is long overdue for an upgrade, and I suggest you not start new projects with
it at this point. QUnit is the testing framework developed and used by the jQuery
team. Like YUI Test it is an in-browser test framework, but follows the traditional
xUnit design less rigidly. The Dojo and Prototype.js libraries both have their test
frameworks as well.

One might get the impression that there are almost as many testing frameworks
out there as there are developers unit testing their scripts—there is no defacto
standard way to test JavaScript. In fact, this is true for most programming tasks
that are not directly related to browser scripting, because JavaScript has no general
purpose standard library. CommonJS is an initiative to rectify this situation, orig-
inally motivated to standardize server-side JavaScript. CommonJS also includes a

 From the Library of WoweBook.Com

ptg

3.3 Headless Testing Frameworks 41

Figure 3.1 Running tests with YUI Test.

unit testing spec, which we will look into when testing a Node.js application in
Chapter 14, Server-Side JavaScript with Node.js.

3.3 Headless Testing Frameworks
In-browser testing frameworks are unfit to support a test-driven development pro-
cess where we need to run tests frequently and integrated into the workflow. An
alternative to these frameworks is headless testing frameworks. These typically run
from the command line, and can be interacted with in the same way testing frame-
works for any other server-side programming language can.

There are a few solutions available for running headless JavaScript unit tests,
most originating from either the Java or Ruby worlds. Both the Java and Ruby
communities have strong testing cultures, and testing only half the code base (the
server-side part) can only make sense for so long, probably explaining why it is these
two communities in particular that have stood out in the area of headless testing
solutions for JavaScript.

 From the Library of WoweBook.Com

ptg

42 Tools of the Trade

3.3.1 Crosscheck
Crosscheck is one of the early headless testing frameworks. It provides a Java backed
emulation of Internet Explorer 6 and Firefox versions 1.0 and 1.5. Needless to say,
Crosscheck is lagging behind, and its choice of browsers are unlikely to help develop
applications for 2010. Crosscheck offers JavaScript unit tests much like that of YUI
Test, the difference being that they can be run on the command line with the
Crosscheck jar file rather than in a browser.

3.3.2 Rhino and env.js
env.js is a library originally developed by John Resig, creator of the jQuery
JavaScript framework. It offers an implementation of the browser (i.e., BOM) and
DOM APIs on top of Rhino, Mozilla’s Java implementation of JavaScript. Using
the env.js library together with Rhino means we can load and run in-browser tests
on the command line.

3.3.3 The Issue with Headless Test Runners
Although the idea of running tests on the command line is exciting, I fail to recognize
the power of running tests in an environment where production code will never run.
Not only are the browser environment and DOM emulations, but the JavaScript
engine (usually Rhino) is an altogether different one as well.

Relying on a testing framework that simply emulates the browser is bad for a
few reasons. For one, it means tests can only be run in browsers that are emulated
by the testing framework, or, as is the case for solutions using Rhino and env.js, in
an alternate browser and DOM implementation altogether. Limiting the available
testing targets is not an ideal feature of a testing framework and is unlikely to help
write cross-browser JavaScript. Second, an emulation will never match whatever it
is emulating perfectly. Microsoft probably proved this best by providing an Internet
Explorer 7 emulation mode in IE8, which is in fact not an exact match of IE7.
Luckily, we can get the best from both worlds, as we will see next, in Section 3.4,
One Test Runner to Rule Them All.

3.4 One Test Runner to Rule Them All
The problem with in-browser testing frameworks is that they can be cumbersome to
work with, especially in a test-driven development setting where we need to run tests
continuously and integrated into the workflow. Additionally, testing on a wide array
of platform/browser combinations can entail quite a bit of manual work. Headless

 From the Library of WoweBook.Com

ptg

3.4 One Test Runner to Rule Them All 43

frameworks are easier to work with, but fail at testing in the actual environment the
code will be running in, reducing their usefulness as testing tools. A fairly new player
on the field of xUnit testing frameworks is JsTestDriver, originating from Google.
In contrast to the traditional frameworks, JsTestDriver is first and foremost a test
runner, and a clever one at that. JsTestDriver solves the aforementioned problems
by making it easy both to run tests and to test widely in real browsers.

3.4.1 How JsTestDriver Works
JsTestDriver uses a small server to run tests. Browsers are captured by the test
runner and tests are scheduled by issuing a request to the server. As each browser
runs the tests, results are sent back to the client and presented to the developer. This
means that as browsers are idly awaiting tests, we can schedule runs from either the
command line, the IDE, or wherever we may feel most comfortable running them
from. This approach has numerous advantages:

• Tests can be run in browsers without requiring manual interaction with the
browser.

• Tests can be run in browsers on multiple machines, including mobile devices,
allowing for arbitrary complex testing grids.

• Tests run fast, due to the fact that results need not be added to the DOM and
rendered, they can be run in any number of browsers simultaneously, and the
browser doesn’t need to reload scripts that haven’t changed since the tests
were last run.

• Tests can use the full DOM because no portion of the document is reserved
for the test runner to display results.

• No need for an HTML fixture, simply provide one or more scripts and test
scripts, an empty document is created on the fly by the test runner.

JsTestDriver tests are fast. The test runner can run complex test suites of several
hundred tests in under a single second. Because tests are run simultaneously, tests will
still run in about a second even when testing 15 browsers at the same time. Granted,
some time is spent communicating with the server and optionally refreshing the
browser cache, but a full run still completes in a matter of a few seconds. Single test
case runs usually complete in the blink of an eye.

As if faster tests, simpler setup, and full DOM flexibility weren’t enough, JsTest-
Driver also offers a plugin that calculates test coverage, XML test report output com-
patible with JUnit’s reports, meaning we can immediately use existing continuous

 From the Library of WoweBook.Com

ptg

44 Tools of the Trade

integration servers, and it can use alternative assertion frameworks. Through plug-
ins, any other JavaScript testing framework can take advantage of the JsTestDriver
test runner, and at the time of writing, adapters for QUnit and YUI Test already
exist. This means tests can be written using YUI Test’s assertions and syntax, but
run using JsTestDriver.

3.4.2 JsTestDriver Disadvantages
At the time of writing, JsTestDriver does not support any form of asynchronous
testing. As we will see in Chapter 12, Abstracting Browser Differences: Ajax, this isn’t
necessarily a problem from a unit testing perspective, but it may limit the options
for integration tests, in which we want to fake as little as possible. It is possible that
asynchronous test support will be added to future versions of JsTestDriver.

Another disadvantage of JsTestDriver is that the JavaScript required to run tests
is slightly more advanced, and may cause a problem in old browsers. For instance,
by design, a browser that is to run JsTestDriver needs to support the XMLHttpRe-
quest object or similar (i.e., Internet Explorer’s corresponding ActiveX object)
in order to communicate with the server. This means that browsers that don’t sup-
port this object (older browsers, Internet Explorer before version 7 with ActiveX
disabled) cannot be tested with the JsTestDriver test runner. This problem can be
effectively circumvented, however, by using YUI Test to write tests, leaving the op-
tion of running them manually with the default test runner in any uncooperative
browser.

3.4.3 Setup
Installing and setting up JsTestDriver is slightly more involved than the average
in-browser testing framework; still, it will only take a few minutes. Also, the setup is
only required once. Any projects started after the fact are dirt simple to get running.
JsTestDriver requires Java to run both the server component and start test runs. I
won’t give instructions on installing Java here, but most systems have Java installed
already. You can check if Java is installed by opening a shell and issue the java
-version command. If you don’t have Java installed, you will find instructions
on java.com.

3.4.3.1 Download the Jar File

Once Java is set up, download the most recent JsTestDriver jar file from
http://code.google.com/p/js-test-driver/downloads/list. All the examples in this
book use version 1.2.1, be sure to use that version when following along with the

 From the Library of WoweBook.Com

http://code.google.com/p/js-test-driver/downloads/list

ptg

3.4 One Test Runner to Rule Them All 45

examples. The jar file can be placed anywhere on the system, I suggest ~/bin. To
make it easier to run, set up an environment variable to point to this directory, as
shown in Listing 3.3.

Listing 3.3 Setting the $JSTESTDRIVER HOME environment variable

export JSTESTDRIVER_HOME=~/bin

Set the environment variable in a login script, such as .bashrc or .zshrc
(depends on the shell—most systems use Bash, i.e., ~/.bashrc, by default).

3.4.3.2 Windows Users

Windows users can set an environment variable in the cmd command line by issuing
theset JSTESTDRIVER_HOME=C:\bin command. To set it permanently, right-
click My Computer (Computer in Windows 7) and select Properties. In the System
window, select Advanced system properties, then the Advanced tab, and then click
the Environment Variables . . . button. Decide if you need to set the environment
variable for yourself only or for all users. Click New, enter the name (JSTEST-
DRIVER HOME) in the top box, and then the path where you saved the jar file in
the bottom one.

3.4.3.3 Start the Server

To run tests through JsTestDriver, we need a running server to capture browsers
with. The server can run anywhere reachable from your machine—locally, on a
machine on the local network, or a public facing machine. Beware that running
the server on a public machine will make it available to anyone unless the machine
restricts access by IP address or similar. To get started, I recommend running the
service locally; this way you can test while being offline as well. Open a shell and issue
the command in either Listing 3.4 or Listing 3.5 (current directory is not important
for this command).

Listing 3.4 Starting the JsTestDriver server on Linux and OSX

java -jar $JSTESTDRIVER_HOME/JsTestDriver-1.2.1.jar --port
4224

Listing 3.5 Starting the JsTestDriver server on Windows

java -jar %JSTESTDRIVER_HOME%\JsTestDriver-1.2.1.jar --port
4224

 From the Library of WoweBook.Com

ptg

46 Tools of the Trade

Port 4224 is the defacto standard JsTestDriver port, but it is arbitrarily picked
and you can run it on any port you want. Once the server is running, the shell
running it must stay open for as long as you need it.

3.4.3.4 Capturing Browsers

Open any browser and point it to http://localhost:4224 (make sure you change the
port number if you used another port when starting the server). The resulting page
will display two links: Capture browser and Capture in strict mode. JsTestDriver runs
tests inside an HTML 4.01 document, and the two links allow us to decide if we
want to run tests with a transitional or strict doctype. Click the appropriate link,
and leave the browser open. Repeat in as many browsers as desired. You can even
try hooking up your phone or browsers on other platforms using virtual instances.

3.4.3.5 Running Tests

Tests can be run from the command line, providing feedback in much the same way
a unit testing framework for any server-side language would. As tests are run, a dot
will appear for every passing test, an F for a failing test, and an E for a test with
errors. An error is any test error that is not a failing assertion, i.e., an unexpected
exception. To run the tests, we need a small configuration file that tells JsTestDriver
which source and test files to load (and in what order), and which server to run tests
against. The configuration file, jsTestDriver.conf by default, uses YAML syntax,
and at its simplest, it loads every source file and every test file, and runs tests at
http://localhost:4224, as seen in Listing 3.6.

Listing 3.6 A barebone jsTestDriver.conf file

server: http://localhost:4224

load:
- src/*.js
- test/*.js

Load paths are relative to the location of the configuration file. When it’s re-
quired to load certain files before others, we can specify them first and still use the
*.js notation, JsTestDriver will only load each file once, even when it is referenced
more than once. Listing 3.7 shows an example where src/mylib.js always need
to load first.

 From the Library of WoweBook.Com

ptg

3.4 One Test Runner to Rule Them All 47

Listing 3.7 Making sure certain files load first

server: http://localhost:4224

load:
- src/mylib.js
- src/*.js
- test/*.js

In order to test the configuration we need a sample project. We will revisit the
strftime example once again, so start by copying the strftime.js file into the src
directory. Then add the test case from Listing 3.8 in test/strftime_test.js.

Listing 3.8 Date.prototype.strftime test with JsTestDriver

TestCase("strftimeTest", {
setUp: function () {

this.date = new Date(2009, 9, 2, 22, 14, 45);
},

tearDown: function () {
delete this.date;

},

"test %Y should return full year": function () {
var year = Date.formats.Y(this.date);

assertNumber(year);
assertEquals(2009, year);

},

"test %m should return month": function () {
var month = Date.formats.m(this.date);

assertString(month);
assertEquals("10", month);

},

"test %d should return date": function () {
assertEquals("02", Date.formats.d(this.date));

},

"test %y should return year as two digits": function () {
assertEquals("09", Date.formats.y(this.date));

},

 From the Library of WoweBook.Com

ptg

48 Tools of the Trade

"test %F should act as %Y-%m-%d": function () {
assertEquals("2009-10-02", this.date.strftime("%F"));

}
});

The test methods are almost syntactically identical to the YUI Test example,
but note how this test case has less scaffolding code to support the test runner. Now
create the configuration file as shown in Listing 3.9.

Listing 3.9 JsTestDriver configuration

server: http://localhost:4224

load:
- src/*.js
- test/*.js

We can now schedule tests to run by issuing the command in Listing 3.10 or
Listing 3.11, depending on your operating system.

Listing 3.10 Running tests with JsTestDriver on Linux and OSX

java -jar $JSTESTDRIVER_HOME/JsTestDriver-1.2.1.jar --tests
all

Listing 3.11 Running tests with JsTestDriver on Windows

java -jar %JSTESTDRIVER_HOME%\JsTestDriver-1.2.1.jar--tests
all

The default configuration file name is jsTestDriver.conf, and as long
as this is used we don’t need to specify it. When using another name, add the
--config path/to/file.conf option.

When running tests, JsTestDriver forces the browser to refresh the test files.
Source files, however, aren’t reloaded between test runs, which may cause errors due
to stale files. We can tell JsTestDriver to reload everything by adding the --reset
option.

3.4.3.6 JsTestDriver and TDD

When TDD-ing, tests will fail frequently, and it is vital that we are able to quickly
verify that we get the failures we expect in order to avoid buggy tests. A browser such
as Internet Explorer is not suitable for this process for a few reasons. First, its error

 From the Library of WoweBook.Com

ptg

3.4 One Test Runner to Rule Them All 49

messages are less than helpful; you have probably seen “Object does not support
this property or method” more times than you care for. The second reason is that
IE, at least in older versions, handles script errors badly. Running a TDD session
in IE will cause it to frequently choke, requiring you to manually refresh it. Not to
mention the lack of performance in IE, which is quite noticeable compared to, e.g.,
Google Chrome.

Disregarding Internet Explorer, I would still advise against keeping too many
browsers in your primary TDD process, because doing so clutters up the test runner’s
report, repeating errors and log messages once for every captured browser. My
advice is to develop against one server that only captures your browser of choice, and
frequently run tests against a second server that captures many browsers. You can
run against this second server as often as needed—after each passed test, completed
method, or if you are feeling bold, even more. Keep in mind that the more code you
add between each run, the harder it will be to spot any bugs that creep up in those
secondary browsers.

To ease this sort of development, it’s best to remove the server line from the
configuration file and use the --server command line option. Personally I do
this kind of development against Firefox, which is reasonably fast, has good error
messages, and always runs on my computer anyway. As soon as I pass a test, I issue
a run on a remote server that captures a wider variety of browsers, new and old.

3.4.4 Using JsTestDriver From an IDE
JsTestDriver also ships plugins for popular integrated development environments
(IDEs), Eclipse and IntelliJ IDEA. In this section I will walk through setting up the
Eclipse plugin and using it to support a test-driven development process. If you are
not interested in developing in Eclipse (or Aptana), feel free to skip to Section 3.4.5,
Improved Command Line Productivity.

3.4.4.1 Installing JsTestDriver in Eclipse

To get started you need to have Eclipse (or Aptana Studio, an IDE based on Eclipse
aimed at web developers) installed. Eclipse is a free open source IDE and can be
downloaded from http://eclipse.org. Once Eclipse is running, go to the Help menu
and select Install new software. In the window that opens, enter the following URL
as a new update site: http://js-test-driver.googlecode.com/svn/update/

“JS Test Driver Eclipse Plugin” should now be displayed with a checkbox next
to it. Check it and click Next. The next screen is a confirmation that sums up the
plugins to be installed. Click Next once again and Eclipse asks you to accept the

 From the Library of WoweBook.Com

http://eclipse.org
http://js-test-driver.googlecode.com/svn/update/

ptg

50 Tools of the Trade

terms of use. Check the appropriate radio button and click Next if you accept. This
should finish the installation.

Once the plugin is installed we need to configure it. Find the Preferences pane
under the Window menu (Eclipse menu on OS X). There should be a new entry
for Js Test Driver; select it. As a bare minimum we need to enter the port where
Eclipse should run the server. Use 4224 to follow along with the example. You can
also enter the paths to browsers installed locally to ease browser capturing, but it’s
not really necessary.

3.4.4.2 Running JsTestDriver in Eclipse

Next up, we need a project. Create a new project and enter the directory for the
command line example as location. Now start the server. Locate the JsTestDriver
panel in Eclipse and click the green play button. Once the server is running, click
the browser icons to capture browsers (given that their path was configured during
setup). Now right-click a file in the project, and select Run As and then Run Configu-
rations . . . Select Js Test Driver Test and click the sheet of paper icon indicating “new
configuration.” Give the configuration a name and select the project’s configuration
file. Now click run and the tests run right inside Eclipse, as seen in Figure 3.2.

Figure 3.2 Running JsTestDriver tests inside Eclipse.

 From the Library of WoweBook.Com

ptg

3.4 One Test Runner to Rule Them All 51

On subsequent runs, simply select Run As and then Name of configuration.
Even better, check the Run on every save checkbox in the configuration prompt.
This way, tests are run anytime a file in the project is saved, perfect for the test-driven
development process.

3.4.5 Improved Command Line Productivity
If the command line is your environment of choice, the Java command to run tests
quickly becomes a bit tiresome to type out. Also, it would be nice to be able to have
tests run automatically whenever files in the project change, just like the Eclipse
and IDEA plugins do. Jstdutil is a Ruby project that adds a thin command line
interface to JsTestDriver. It provides a leaner command to run tests as well as an
jsautotest command that runs related tests whenever files in the project change.

Jstdutil requires Ruby, which comes pre-installed on Mac OS X. For other
systems, installation instructions can be found on ruby-lang.org. With Ruby
installed, install Jstdutil by running `gem install jstdutil` in a shell.
Jstdutil uses the previously mentioned $JSTESTDRIVER_HOME environment
variable to locate the JsTestDriver jar file. This means that running tests is a
simple matter of `jstestdriver --tests all`, or for autotest, simply
`jsautotest`. If the configuration file is not automatically picked up, spec-
ify it using `jstestdriver --config path/to/file.conf --tests

all`. The jstestdriver and jsautotest commands also add coloring to
the test report, giving us that nice red/green visual feedback.

3.4.6 Assertions
JsTestDriver supports a rich set of assertions. These assertions allow for highly
expressive tests and detailed feedback on failures, even when a custom assertion
message isn’t specified. The full list of supported assertions in JsTestDriver is:

• assert(msg, value)

• assertTrue(msg, value)

• assertFalse(msg, value)

• assertEquals(msg, expected, actual)

• assertNotEquals(msg, expected, actual)

• assertSame(msg, expected, actual)

• assertNotSame(msg, expected, actual)

• assertNull(msg, value)

 From the Library of WoweBook.Com

ptg

52 Tools of the Trade

• assertNotNull(msg, value)

• assertUndefined(msg, value)

• assertNotUndefined(msg, value)

• assertNaN(msg, number)

• assertNotNaN(msg, number)

• assertException(msg, callback, type)

• assertNoException(msg, callback)

• assertArray(msg, arrayLike)

• assertTypeOf(msg, type, object)

• assertBoolean(msg, value)

• assertFunction(msg, value)

• assertNumber(msg, value)

• assertObject(msg, value)

• assertString(msg, value)

• assertMatch(msg, pattern, string)

• assertNoMatch(msg, pattern, string)

• assertTagName(msg, tagName, element)

• assertClassName(msg, className, element)

• assertElementId(msg, id, element)

• assertInstanceOf(msg, constructor, object)

• assertNotInstanceOf(msg, constructor, object)

We will be using JsTestDriver for most examples throughout this book.

3.5 Summary
In this chapter we have taken a look at what tools can be helpful to support the
test-driven development process, as well as a few available tools. Getting a good
test-driven development rhythm requires adequate tools, and for the remaining
examples of this book, JsTestDriver was selected to run tests. It offers both a highly
efficient workflow as well as thorough testing on a wide array of platform and
browser combinations.

This chapter also touched briefly on BDD and “specs” and how test-driven
development, as practiced in this book, shares a lot in common with it.

 From the Library of WoweBook.Com

ptg

3.5 Summary 53

Although we visited the topics of test coverage reports and continuous integra-
tion in this chapter, no setup or examples were given for such tools. On the book’s
website1 you will find a guide to running the Coverage plugin for JsTestDriver as
well as a guide on how to run JsTestDriver tests in the open source continuous
integration server Hudson.

In the next chapter we will have a look at some other ways to utilize unit tests
before we move on to Part II, JavaScript for Programmers.

1. http://tddjs.com

 From the Library of WoweBook.Com

http://tddjs.com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

4Test to Learn

In the previous three chapters we have seen how automated tests can help improve
quality of code, guide design and drive development. In this chapter we will use
automated tests to learn. As small executable code examples, unit tests make a
perfect learning resource. Isolating a specific aspect of an interface in a unit test is a
great way to learn more about how it behaves. Other types of automated tests can
help our understanding of both the language and specific problems. Benchmarks
are a valuable tool to measure relative performance, and can guide decisions about
how to solve a specific problem.

4.1 Exploring JavaScript with Unit Tests
Quickly executing JavaScript, as in executing a few lines of script to explore the
behavior of some object, is fairly simple. Most modern browsers ship with a console
that serves this purpose just fine. Additionally, there are several options for JavaScript
command line interfaces when the browser environment is not of particular interest.
Although this sort of one-off coding session can help our understanding of an inter-
face, it suffers from the same problems that manual application testing does. There
is no way to repeat a given experiment, there is no record of previously run experi-
ments, and there is no simple way of repeating an experiment in multiple browsers.

In Chapter 1, Automated Testing, we introduced unit tests as a means to solve
the problems brought on by manual testing. Surely, unit tests can help us solve

55

 From the Library of WoweBook.Com

ptg

56 Test to Learn

the same problems when we want to simply explore an interface to learn. For this
purpose we can write learning tests, i.e., unit tests written with the goal of learning,
not with the goal of testing the exercised interface per se.

As an example, let us take the built-in Array.prototype.splicemethod
for a spin. This method accepts two or more arguments: an index to start with, a
number of items to remove, and optional elements to insert into the array. We are
curious as to whether or not this method alters the original array. We could look
up the answer, or we could simply ask JavaScript to tell us, as the learning test in
Listing 4.1 shows. To run the test, set up a JsTestDriver project as explained in
Chapter 3, Tools of the Trade, with a test directory and save the test in a file in
that directory. Add a configuration file that loads test/*.js.

Listing 4.1 Expecting Array.prototype.splice to modify the array

TestCase("ArrayTest", {
"test array splice should not modify array": function () {
var arr = [1, 2, 3, 4, 5];
var result = arr.splice(2, 3);

assertEquals([1, 2, 3, 4, 5], arr);
}

});

Because we don’t really know what the answer is, we roll with the assumption
that the splicemethod is not destructive. Note how this contrasts with traditional
unit testing—when testing production code we should always write assertions on
firm expectation about the result. However, we are now learning by observing what
the implementation can tell us, and so whatever answer we are assuming before run-
ning the test is not of grave importance. Running the test proves us wrong anyway:
“expected[1, 2, 3, 4, 5] but was[1, 2].” So we have learned something
new. To record our findings, Listing 4.2 updates the test to state what we now know
to be true.

Listing 4.2 Array.prototype.splice modifies the receiving array

TestCase("ArrayTest", {
"test array splice should modify array": function () {
var arr = [1, 2, 3, 4, 5];
var result = arr.splice(2, 3);

assertEquals([1, 2], arr);
}

});

 From the Library of WoweBook.Com

ptg

4.1 Exploring JavaScript with Unit Tests 57

Note how both the wording and the assertion changed. Because we have dis-
covered that the method in question is in fact destructive, we now wonder: Does it
also return the result? Listing 4.3 investigates.

Listing 4.3 Expecting Array.prototype.splice to return the spliced array

"test array splice should return modified array":
function () {

var arr = [1, 2, 3, 4, 5];
var result = arr.splice(2, 3);

assertEquals(arr, result);
}

Running this test proves us wrong yet again: “expected [1, 2] but was
[3, 4, 5].” Apparently, the splice method returns the removed items. Time
to update the wording of our test, as seen in Listing 4.4.

Listing 4.4 Expecting Array.prototype.splice to return removed items

"test array splice should return removed items":
function () {

var arr = [1, 2, 3, 4, 5];
var result = arr.splice(2, 3);

assertEquals([3, 4, 5], result);
}

Rather than playing with an array and thesplicemethod in a browser console,
we put the test in a file. With a minimum of added overhead, we now have a
repeatable experiment that documents what we just learned, perfect for later review.
Using the JsTestDriver test runner, we could even send this test out to an army of
browsers to verify that the two tests run consistently across browsers.

Testing built-in functionality like this might seem to contradict our usual attitude
toward unit testing: never to test code that we didn’t write ourselves, and to mock or
stub external dependencies while testing. These are still valuable pieces of advice,
but they do not apply to learning tests. Learning tests aren’t a part of production
code; they live in a separate repository, a personal repository, and they help us
document our knowledge and our learning experience.

Still, in contrast to traditional applications of unit testing, learning tests cannot
be successfully collaborated on. Everyone should keep their own suite of learning
tests. The reason for this advice is simply that it is not the tests themselves that

 From the Library of WoweBook.Com

ptg

58 Test to Learn

provides the highest value. Writing the test, including all the surrounding thought
process is what we primarily learn from. Keeping the tests allows us to revisit a
given exercise at a later time, or run it in a newly discovered browser to see if our
experience still serves us well. Browsing through a suite of learning tests written by
someone else might provide a few nuggets of information, but is unlikely to embed
knowledge inside our brains the same way writing learning tests does.

4.1.1 Pitfalls of Programming by Observation
When we talk about JavaScript, we are really talking about several dialects; Mozilla’s
JavaScript™, Microsoft’s JScript and Webkit’s JavaScriptCore to name a few. These
all stem from the original JavaScript language invented by Netscape and have
their common ground in ECMA-262, or ECMAScript, a standardization of that
very language. Because we are really targeting several dialects when writing client
side scripts, there is no canonical source of information of the kind we retrieved
in the two learning tests from the previous section. In other words, there is no
authoritative interpreter to ask for information about JavaScript—they all have
their bugs and quirks, they all have their proprietary extensions, and their mar-
ket share is more evenly distributed than ever (even though Microsoft still domi-
nates with Internet Explorer versions 6-8 combined)—meaning there are no single
browser that can be considered “best,” our scripts will have to run in all of them
anyway.

Because there are so many versions of the language in active use, we cannot
blindly trust the results of some statements run in a single browser alone. And
when results differ between browsers, which one do we trust? When in doubt, we
need to consult the source—the ECMA-262 specification. When browsers behave
differently on language features, we need to consult the spec they are trying to im-
plement to understand properly what the correct answer is. Only when we know
how something is intended to work can we get to work fixing it, either by over-
writing the built-in implementation for misbehaving browsers, or by providing an
abstraction.

By writing the two learning tests in the previous section, we learned a few
things about the Array.prototype.splice method by observing the results
of running our test in a browser. Drawing conclusions based on a small sample of
observations can prove to be a dangerous approach, especially when dealing with
browser differences.

White-space matching in regular expressions using \s is an example of how
observations may lead us astray. Until recently, no implementation correctly matched
all white-space characters defined by ECMA-262. Tests for certain white-space

 From the Library of WoweBook.Com

ptg

4.1 Exploring JavaScript with Unit Tests 59

characters would fail in all browsers, possibly leading us to conclude that the \s
character class isn’t supposed to match the specific character being tested.

4.1.2 The Sweet Spot for Learning Tests
Even though we should exercise healthy skepticism toward “programming by ob-
servation,” the learning test can be a very helpful tool aiding our understanding of
the JavaScript language and the environments in which it runs. In this section we
will run through a few cases where learning tests can help more efficiently accelerate
and maintain learning and knowledge of the language.

4.1.2.1 Capturing Wisdom Found in the Wild

The learning test is the perfect tool to capture some wisdom picked up while reading
someone else’s code, an article or a book. This might not be something entirely new;
it could be as simple as a clever trick. Writing it down as a test case provides several
benefits. For one, it puts us through actually writing the code down, helping us
remember whatever it is we are picking up. Second, having the code isolated in the
test allows us to more easily play with it and run it in several browsers. It also means
we can copy and modify it a few times over, bending it to learn more from it. As
always, keeping the test with the rest of the learning tests provides documentation
that can be reviewed at a later point.

4.1.2.2 Exploring Weird Behavior

Every now and then we stumble upon weird bugs or other unexpected behavior
when developing production code. Failing to draw the necessary lessons from such
experiences will set us at risk for repeating the mistake. Isolating the nature of the
bug in a learning test can help us control iffy situations and become aware of them
when they arise, helping us spot them as they’re forming rather than when they’re
causing bugs in the code.

4.1.2.3 Exploring New Browsers

Keeping a suite of learning tests can kick start exploration of a newly released
browser. Does the browser change any behaviors we have come to rely on? Does it
fix any bugs we are currently working our way around? I’m not saying we should
manually maintain comprehensive test suites for ECMA-262, the DOM, and other
interfaces, but running a suite of learning tests in a newly released browser means
we can check how our accumulated experience holds up, and it might immediately
teach us something new.

 From the Library of WoweBook.Com

ptg

60 Test to Learn

4.1.2.4 Exploring Frameworks

Third party interfaces such as “Ajax libraries” make excellent targets for a few
learning tests. The learning tests provide neutral ground to play with a library, and
we get to try out the interfaces in a more free form than we probably would if
we simply dropped the framework right into the application. In fact, doing a little
bit of experimenting with a given framework can even influence the decision on
whether or not to use it in an application. Many libraries have lots of initial appeal,
but fail to live up to their expectations in practice. Exercising them in a sandboxed
environment allows us to get a better feel of using them, and we are free to push
them through hoops we know they will need to handle when introduced to a real
production environment. Again, performing this kind of experiment in structured
files rather than a console environment means we can refer to them at any point,
perhaps to compare a set of libraries that was tested.

4.2 Performance Tests
Another type of automated test that can teach us a whole lot are benchmarks that test
relative performance. Most problems can be solved in many ways, and sometimes
it is not obvious which solution is best. For example, as we will see in Chapter 7,
Objects and Prototypal Inheritance, there are different ways of creating JavaScript
objects, mainly the pseudo-classical way, using JavaScript’s constructors, and the
functional approach, using closures. How do we choose which strategy to employ?
Personal preference usually plays a part in such choices, as does testability, flexibility,
and performance. Depending on the use case, the performance aspect can prove to
be very important.

4.2.1 Benchmarks and Relative Performance
Whenever we have two or more ways to solve a given problem, a benchmark can
indicate how one solution performs relative to alternatives; hence “relative perfor-
mance.” A benchmark is a very simple concept:

• Create a new Date().

• Exercise the code alternative to measure.

• Create a new Date(); subtract the start date to find total time.

• Repeat for all alternatives.

• Compare results.

Exercising the code alternative to measure usually needs to be done many times
in a loop to improve accuracy of the measurement. Additionally, Windows XP and

 From the Library of WoweBook.Com

ptg

4.2 Performance Tests 61

Windows Vista complicates the matter by providing browsers with timers that only
update every 15ms. This means that fast-running tests can be hugely inaccurate, the
best approach is to run tests for at least 500ms or so.

Listing 4.5 shows a function that we will use to run some benchmarks to measure
relative performance. Save it in lib/benchmark.js.

Listing 4.5 A benchmark runner

var ol;

function runBenchmark(name, test) {
if (!ol) {

ol = document.createElement("ol");
document.body.appendChild(ol);

}

setTimeout(function () {
var start = new Date().getTime();
test();
var total = new Date().getTime() - start;

var li = document.createElement("li");
li.innerHTML = name + ": " + total + "ms";
ol.appendChild(li);

}, 15);
}

Listing 4.6 uses this function to measure relative performance of different loop-
ing styles. Save the file in benchmarks/loops.js.

Listing 4.6 Benchmarking loops

var loopLength = 500000;

// Populate an array to loop
var array = [];

for (var i = 0; i < loopLength; i++) {
array[i] = "item" + i;

}

function forLoop() {
for (var i = 0, item; i < array.length; i++) {

item = array[i];
}

}

 From the Library of WoweBook.Com

ptg

62 Test to Learn

function forLoopCachedLength() {
for (var i = 0, l = array.length, item; i < l; i++) {
item = array[i];

}
}

function forLoopDirectAccess() {
for (var i = 0, item; (item = array[i]); i++) {
}

}

function whileLoop() {
var i = 0, item;

while (i < array.length) {
item = array[i];
i++;

}
}

function whileLoopCachedLength() {
var i = 0, l = array.length, item;

while (i < l) {
item = array[i];
i++;

}
}

function reversedWhileLoop() {
var l = array.length, item;

while (l--) {
item = array[l];

}
}

function doubleReversedWhileLoop() {
var l = array.length, i = l, item;

while (i--) {
item = array[l - i - 1];

}
}

 From the Library of WoweBook.Com

ptg

4.2 Performance Tests 63

// Run tests
runBenchmark("for-loop",

forLoop);
runBenchmark("for-loop, cached length",

forLoopCachedLength);
runBenchmark("for-loop, direct array access",

forLoopDirectAccess);
runBenchmark("while-loop",

whileLoop);
runBenchmark("while-loop, cached length property",

whileLoopCachedLength);
runBenchmark("reversed while-loop",

reversedWhileLoop);
runBenchmark("double reversed while-loop",

doubleReversedWhileLoop);

The setTimeout call is important to avoid choking the browser while testing.
The browser uses a single thread to run JavaScript, fire events and render web pages,
and the timers allow the browser some “breathing room” to pick up on queued tasks
between tests that are potentially long running. Breaking the workload up with
timers also avoids browsers interrupting the tests to warn us about “slow scripts.”

To run these benchmarks, all we need is a simple HTML file, like the one in
Listing 4.7, that loads the script. Save the file in benchmarks/loops.html.

Listing 4.7 YUI Test HTML fixture file

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<title>Relative performance of loops</title>
<meta http-equiv="content-type"

content="text/html; charset=UTF-8">
</head>
<body>

<h1>Relative performance of loops</h1>
<script type="text/javascript" src="../lib/benchmark.js">
</script>
<script type="text/javascript" src="loops.js"></script>

</body>
</html>

All the tests do the exact same thing: loop over all items in the array and access
the current item. Accessing the current item adds to the footprint of the test, but
it also allows us to compare the loop that accesses the current item in the loop

 From the Library of WoweBook.Com

ptg

64 Test to Learn

conditional with the rest. This is not always a safe choice, because empty strings,
null, 0, and other false values will terminate the loop. Also, this style of looping
performs terribly on some browsers and should be avoided. Because all the tests
access the current item, we can disregard the overhead as fluctuations in the test
results will be the result of the different looping styles. Note that the reversed
while-loop is not directly comparable as it loops the array backwards. However,
whenever order is not important, it’s commonly the fastest way to loop an array, as
seen by running the above benchmark.

Benchmarks such as that in Listing 4.6 are dead easy to set up. Still, to make them
easier to integrate into our workflow, we can craft a simple benchmark function
that removes all unnecessary cruft from writing benchmarks. Listing 4.8 shows one
possible such function. The function accepts a label for the series of tests and then
an object where the property names are taken as test names and property values are
run as tests. The last argument is optional and instructsbenchmark as to how many
times a test should be run. Results are printed in both full and average time per test.

Listing 4.8 A simple benchmarking tool

var benchmark = (function () {
function init(name) {
var heading = document.createElement("h2");
heading.innerHTML = name;
document.body.appendChild(heading);

var ol = document.createElement("ol");
document.body.appendChild(ol);

return ol;
}

function runTests(tests, view, iterations) {
for (var label in tests) {

if (!tests.hasOwnProperty(label) ||
typeof tests[label] != "function") {

continue;
}

(function (name, test) {
setTimeout(function () {

var start = new Date().getTime();
var l = iterations;

while (l--) {
test();

}

 From the Library of WoweBook.Com

ptg

4.2 Performance Tests 65

var total = new Date().getTime() - start;

var li = document.createElement("li");
li.innerHTML = name + ": " + total +
"ms (total), " + (total / iterations) +
"ms (avg)";

view.appendChild(li);
}, 15);

}(label, tests[label]));
}

}

function benchmark(name, tests, iterations) {
iterations = iterations || 1000;
var view = init(name);
runTests(tests, view, iterations);

}

return benchmark;
}());

The benchmark function does one thing noticeably different from our previ-
ous example. It runs each iteration as a function. The test is captured as a function,
which is run the specified number of times. This function call itself has a footprint,
so the end result is less accurate as to how long the test took, especially for small
test functions. However, in most cases the overhead is ignorable because we are
testing relative performance. To avoid having the function call skew tests too much,
we can write the tests so that they are sufficiently complex. An alternative way to
implement this is to take advantage of the fact that functions have a length prop-
erty that reveals how many formal parameters a function takes. If this number is
zero, then we loop. Otherwise, we will assume that the test expects the number of
iterations as an argument and simply call the function, passing the iteration count.
This can be seen in Listing 4.9.

Listing 4.9 Using Function.prototype.length to loop or not

// Inside runTests
(function (name, test) {
setTimeout(function () {

var start = new Date().getTime();
var l = iterations;

if (!test.length) {
while (l--) {

 From the Library of WoweBook.Com

ptg

66 Test to Learn

test();
}

} else {
test(l);

}

var total = new Date().getTime() - start;

var li = document.createElement("li");
li.innerHTML = name + ": " + total +

"ms (total), " + (total / iterations) +
"ms (avg)";

view.appendChild(li);
}, 15);

}(label, tests[label]));

As an example of benchmark’s usage, we can reformat the loop tests using it.
In this example, the length of the array to loop is somewhat reduced, and the total
number of iterations is increased. Listing 4.10 shows the rewritten test. Some of the
tests have been removed for brevity.

Listing 4.10 Using benchmark

var loopLength = 100000;
var array = [];

for (var i = 0; i < loopLength; i++) {
array[i] = "item" + i;

}

benchmark("Loop performance", {
"for-loop": function () {

for (var i = 0, item; i < array.length; i++) {
item = array[i];

}
},

"for-loop, cached length": function () {
for (var i = 0, l = array.length, item; i < l; i++) {
item = array[i];

}
},

// ...

"double reversed while-loop": function () {

 From the Library of WoweBook.Com

ptg

4.2 Performance Tests 67

var l = array.length, i = l, item;

while (i--) {
item = array[l - i - 1];

}
}

}, 1000);

This sort of benchmarking utility can be extended to yield more helpful reports.
Highlighting the fastest and slowest tests comes to mind as a useful extension. Listing
4.11 shows a possible solution.

Listing 4.11 Measuring and highlighting extremes

// Record times
var times;

function runTests (tests, view, iterations) {
// ...
(function (name, test) {

// ...
var total = new Date().getTime() - start;
times[name] = total;
// ...

}(label, tests[label]));
// ...

}

function highlightExtremes(view) {
// The timeout is queued after all other timers, ensuring
// that all tests are finished running and the times
// object is populated
setTimeout(function () {

var min = new Date().getTime();
var max = 0;
var fastest, slowest;

for (var label in times) {
if (!times.hasOwnProperty(label)) {

continue;
}

if (times[label] < min) {
min = times[label];
fastest = label;

}

 From the Library of WoweBook.Com

ptg

68 Test to Learn

if (times[label] > max) {
max = times[label];
slowest = label;

}
}

var lis = view.getElementsByTagName("li");
var fastRegexp = new RegExp("^" + fastest + ":");
var slowRegexp = new RegExp("^" + slowest + ":");

for (var i = 0, l = lis.length; i < l; i++) {
if (slowRegexp.test(lis[i].innerHTML)) {

lis[i].style.color = "#c00";
}

if (fastRegexp.test(lis[i].innerHTML)) {
lis[i].style.color = "#0c0";

}
}

}, 15);
}

// Updated benchmark function
function benchmark (name, tests, iterations) {
iterations = iterations || 1000;
times = {};
var view = init(name);
runTests(tests, view, iterations);
highlightExtremes(view);

}

To further enhance benchmark we could decouple the DOM manipulation
that displays results to allow for alternate report generators. This would also allow us
to benchmark code in environments without a DOM, such as server-side JavaScript
runtimes.

4.2.2 Profiling and Locating Bottlenecks
Firebug, the web developer add-on for Firefox, offers a profiler that can profile
code as it runs. For instance, we can launch a live site, start the profiler and click a
link that triggers a script. After the script finishes we stop the profiler. At this point
the profile report will show us a breakdown of all functions run, along with how
much time was spent on each of them. Many times the number of functions run
to perform some task can in itself be valuable information that points us to overly

 From the Library of WoweBook.Com

ptg

4.3 Summary 69

Figure 4.1 Profiling Twitter’s search feature.

complex code. As an example of the Firebug profiler, Figure 4.1 shows the profile
report after having used Twitter’s search feature, which uses an XMLHttpRequest
to fetch data, and manipulates the DOM to display the results. The profile report
shows a lot going on inside jQuery, and a total of over 31,000 function calls.

4.3 Summary
In this chapter we have seen how unit tests can be utilized not necessarily only to
support production code, but also to help us learn more about JavaScript. Keeping
a suite of learning tests is a great way to document our learning, and they provide
a handy reference over issues we have encountered in the past. While reading this
book I encourage you to try out some of the examples and play with them to
understand what is going on. If you don’t already have a learning test suite, now
would be a great time to start one, and you can start writing tests to further your
understanding of examples from this book.

Benchmarks can help guide decisions when there are several viable ways of
solving a given problem. By measuring relative performance we can learn patterns

 From the Library of WoweBook.Com

ptg

70 Test to Learn

that tend to perform better, and keeping benchmarks along with learning tests makes
for a powerful personal knowledge bank.

This chapter concludes the introduction to automated testing. In Part II,
JavaScript for Programmers, we will take a deep dive into JavaScript, specifically
focusing on aspects of the language that sets it apart from other programming lan-
guages. This means a detailed look at objects, constructors, and prototypes, as well
as JavaScript scoping and functions.

 From the Library of WoweBook.Com

ptg

Part II

JavaScript for
Programmers

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

5Functions

JavaScript functions are powerful beasts. They are first class objects, meaning they
can be assigned to variables and as properties, passed as arguments to functions, have
properties of their own, and more. JavaScript also supports anonymous functions,
commonly used for inline callbacks to other functions and object methods.

In this chapter we will cover the somewhat theoretical side of JavaScript func-
tions, providing us with the required background to easily dive into the more in-
teresting uses of functions as we dig into into closures in Chapter 6, Applied Func-
tions and Closures, and methods and functions as a means to implement objects in
Chapter 7, Objects and Prototypal Inheritance.

5.1 Defining Functions
Throughout the first part of this book we have already seen several ways to define
functions. In this section we will go over the different ways JavaScript allows us
to do so, and investigate their pros and cons as well as some unexpected browser
differences.

5.1.1 Function Declaration
The most straightforward way to define a function is by way of a function definition,
seen in Listing 5.1.

73

 From the Library of WoweBook.Com

ptg

74 Functions

Listing 5.1 A function declaration

function assert(message, expr) {
if (!expr) {
throw new Error(message);

}

assert.count++;

return true;
}

assert.count = 0;

This is the assert function from Chapter 1, Automated Testing. The function
declaration starts with the keyword function, followed by an identifier, assert
in the above example. The function may define one or more formal parameters, i.e.,
named arguments. Finally, the function has a body enclosed in brackets. Functions
may return a value. If no return statement is present, or if it’s present without an
expression, the function returns undefined. Being first class objects, functions
can also have properties assigned to them, evident by the count property in the
above example.

5.1.2 Function Expression
In addition to function declarations, JavaScript supports function expressions. A
function expression results in an anonymous function that may be immediately exe-
cuted, passed to another function, returned from a function, or assigned to a variable
or an object property. In function expressions the identifier is optional. Listing 5.2
shows the assert function from before implemented as a function expression.

Listing 5.2 An anonymous function expression

var assert = function (message, expr) {
if (!expr) {
throw new Error(message);

}

assert.count++;

return true;
};

assert.count = 0;

 From the Library of WoweBook.Com

ptg

5.1 Defining Functions 75

Note that in contrast to function declarations, function expressions—like any
expression—should be terminated by a semicolon. Although not strictly necessary,
automatic semicolon insertion can cause unexpected results, and best practices
dictate that we always insert our own semicolons.

This alternative implementation of theassert function differs somewhat from
the previous one. The anonymous function has no name, and so can only refer to
itself by way of arguments.callee or through the assert variable, accessible
through the scope chain. We will discuss both thearguments object and the scope
chain in more detail shortly.

As noted previously, the identifier is optional in function expressions. Whether
named function expressions are still anonymous functions is a matter of definition,
but the functions stay anonymous to the enclosing scope. Listing 5.3 shows an
example of a named function expression. We will discuss the implications and cross-
browser issues surrounding named function expressions in Section 5.3.6, Function
Expressions Revisited.

Listing 5.3 A named function expression

var assert = function assert(message, expr) {
if (!expr) {

throw new Error(message);
}

assert.count++;

return true;
};

assert.count = 0;

5.1.3 The Function Constructor
JavaScript functions are first class objects, which means they can have properties,
including methods, of their own. Like any other JavaScript object, functions have
a prototype chain; functions inherit from Function.prototype, which in turn
inherits from Object.prototype.1 The Function.prototype object pro-
vides a few useful properties, such as the call and apply methods. In addition
to the properties defined by their prototypes, function objects have length and
prototype properties.

1. The details of JavaScript’s prototypal inheritance are covered in Chapter 7, Objects and Prototypal
Inheritance.

 From the Library of WoweBook.Com

ptg

76 Functions

In contrast to what one might expect, the prototype property is not a ref-
erence to the function object’s internal prototype (i.e., Function.prototype).
Rather, it is an object that will serve as the prototype for any object created by using
the function as a constructor. Constructors will be covered in depth in Chapter 7,
Objects and Prototypal Inheritance.

The length property of a function indicates how many formal parameters
it expects, sometimes referred to as the function’s arity. Listing 5.4 shows an
example.

Listing 5.4 Function objects length property

TestCase("FunctionTest", {
"test function length property": function () {
assertEquals(2, assert.length);
assertEquals(1, document.getElementById.length);
assertEquals(0, console.log.length); // In Firebug

}
});

The test can be run with JsTestDriver by setting up a project including a con-
figuration file as described in Chapter 3, Tools of the Trade.

The benchmark method in Listing 4.9 in Chapter 4, Test to Learn, used the
length property to determine if the benchmark should be called in a loop. If the
function took no formal parameters, the benchmark function looped it; otherwise
the number of iterations was passed to the function to allow it to loop on its own,
avoiding the overhead of the function calls.

Note in the above example how Firebug’s console.log method does not
use formal parameters at all. Still, we can pass as many arguments as we want, and
they are all logged. Chrome’s implementation of document.getElementById
also has a length of 0. It turns out that formal parameters is only one of two ways to
access arguments passed to a function.

The Function constructor can be used to create new functions as well. It can
either be called as a function, i.e., Function(p1, p2, . . . , pn, body);, or
used in anew expression, as innew Function(p1, p2, . . . , pn, body);

with equal results. Both expressions create a new function object, and accept as
arguments any number of formal parameters the new function should accept along
with an optional function body as a string. Calling the function with no arguments
results in an anonymous function that expects no formal parameters and has no
function body. Listing 5.5 shows an example of defining the assert function via
the Function constructor called as a function.

 From the Library of WoweBook.Com

ptg

5.2 Calling Functions 77

Listing 5.5 Creating a function via Function

var assert = Function("message", "expr",
"if (!expr) { throw new Error(message); }" +
"assert.count++; return true;");

assert.count = 0;

When creating functions this way, we can provide the formal parameters in a
number of ways. The most straightforward way is to pass one string per parameter,
as in the above example. However, we can also pass a single comma-separated string,
or a mix of the two, i.e., Function("p1,p2,p3", "p4", body);.

The Function constructor is useful when the function body needs to be
dynamically compiled, such as when creating functions tailored to the running
environment or a set of input values, which can result in highly performant code.

5.2 Calling Functions
JavaScript offers two ways of calling a function—directly using parentheses or
indirectly using the call and apply methods inherited from Function.

prototype. Direct invocation works as one would expect, as seen in Listing 5.6.

Listing 5.6 Calling a function directly

assert("Should be true", typeof assert == "function");

When calling a function, JavaScript performs no check on the number of ar-
guments. You can pass zero, one, or ten arguments to a function regardless of the
number of formal parameters it specifies. Any formal parameter that does not receive
an actual value will have undefined as its value.

5.2.1 The arguments Object
All of a function’s arguments are available through the array-like object argu-
ments. This object has a length property, denoting the number of received
arguments, and numeric indexes from 0 to length - 1 corresponding to the ar-
guments passed when calling the function. Listing 5.7 shows the assert function
using this object rather than its formal parameters.

 From the Library of WoweBook.Com

ptg

78 Functions

Listing 5.7 Using arguments

function assert(message, expr) {
if (arguments.length < 2) {
throw new Error("Provide message and value to test");

}

if (!arguments[1]) {
throw new Error(arguments[0]);

}

assert.count++;

return true;
}

assert.count = 0;

This is not a particularly useful way to usearguments, but shows how it works.
In general, the arguments object should only be used when formal parameters
cannot solve the problem at hand, because using it comes with a performance price.
In fact, merely referencing the object will induce some overhead, indicating that
browsers optimize functions that don’t use it.

The arguments object is array-like only through its length property and
numeric index properties; it does not provide array methods. Still, we can use
array methods on it by utilizing Array.prototype.* and their call or apply
methods. Listing 5.8 shows an example in which we create an array consisting of all
but the first argument to a function.

Listing 5.8 Using array methods with arguments

function addToArray() {
var targetArr = arguments[0];
var add = Array.prototype.slice.call(arguments, 1);

return targetArr.concat(add);
}

As with arrays, the numerical indexes on the arguments object are really only
properties with numbers for identifiers. Object identifiers are always converted to
strings in JavaScript, which explains the code in Listing 5.9.

 From the Library of WoweBook.Com

ptg

5.2 Calling Functions 79

Listing 5.9 Accessing properties with strings

function addToArray() {
var targetArr = arguments["0"];
var add = Array.prototype.slice.call(arguments, 1);

return targetArr.concat(add);
}

Some browsers like Firefox optimize arrays, indeed treating numeric property
identifiers as numbers. Even so, the properties can always be accessed by string
identifiers.

5.2.2 Formal Parameters and arguments
The arguments object shares a dynamic relationship with formal parameters;
changing a property of the arguments object causes the corresponding formal
parameter to change and vice versa as Listing 5.10 shows.

Listing 5.10 Modifying arguments

TestCase("FormalParametersArgumentsTest", {
"test dynamic relationship": function () {

function modify(a, b) {
b = 42;
arguments[0] = arguments[1];

return a;
}

assertEquals(42, modify(1, 2));
}

});

Setting the formal parameter b to 42 causes arguments[1] to update ac-
cordingly. Setting arguments[0] to this value in turn causes a to update as well.

This relationship only exists for formal parameters that actually receive values.
Listing 5.11 shows the same example in which the second argument is left out when
calling the function.

Listing 5.11 No dynamic mapping for missing parameters

assertUndefined(modify(1));

 From the Library of WoweBook.Com

ptg

80 Functions

In this example, the return value is undefined because setting b does not
update arguments[1]when no value was passed to b. Thus, arguments[1] is
still undefined, which causes arguments[0] to be undefined. a did receive
a value and is still linked to the arguments object, meaning that the returned
value is undefined. Not all browsers do this by the spec, so your mileage may
vary with the above examples.

This relationship may be confusing, and in some cases can be the source of
mysterious bugs. A good piece of advice is to be careful when modifying function
parameters, especially in functions that use both the formal parameters and the
argumentsobject. In most cases defining a new variable is a much sounder strategy
than tampering with formal parameters or arguments. For the reasons stated,
ECMAScript 5, the next version of JavaScript, removes this feature in strict mode.
Strict mode is discussed in detail in Chapter 8, ECMAScript 5th Edition.

5.3 Scope and Execution Context
JavaScript only has two kinds of scope; global scope and function scope. This might
be confusing to developers used to block scope. Listing 5.12 shows an example.

Listing 5.12 Function scope

"test scope": function () {
function sum() {
assertUndefined(i);

assertException(function () {
assertUndefined(someVar);

}, "ReferenceError");

var total = arguments[0];

if (arguments.length > 1) {
for (var i = 1, l = arguments.length; i < l; i++) {
total += arguments[i];

}
}

assertEquals(5, i);

return total;
}

sum(1, 2, 3, 4, 5);
}

 From the Library of WoweBook.Com

ptg

5.3 Scope and Execution Context 81

This example shows a few interesting aspects. The i variable is declared even
before the var statement inside the for loop. Notice how accessing some arbi-
trary variable will not work, and throws a ReferenceError (or TypeError in
Internet Explorer). Furthermore, the i variable is still accessible, and has a value,
after the for loop. A common error in methods that use more than one loop is to
redeclare the i variable in every loop.

In addition to global scope and function scope, the with statement can alter
the scope chain for its block, but its usage is usually discouraged and it is effectively
deprecated in ECMAScript 5 strict mode. The next version of ECMAScript, cur-
rently a work-in-progress under the name of “Harmony”, is slated to introduce block
scope with the let statement. let has been available as a proprietary extension to
Mozilla’s JavaScript™ since version 1.7, first released with Firefox 2.0.

5.3.1 Execution Contexts
The ECMAScript specification describes all JavaScript code to operate in an ex-
ecution context. Execution contexts are not accessible entities in JavaScript, but
understanding them is vital to fully understand how functions and closures work.
From the specification:

“Whenever control is transferred to ECMAScript executable code, control is
entering an execution context. Active execution contexts logically form a stack. The
top execution context on this stack is the running execution context.”

5.3.2 The Variable Object
An execution context has a variable object. Any variables and functions defined in-
side the function are added as properties on this object. The algorithm that describes
this process explain all of the examples in the previous section.

• For any formal parameters, add corresponding properties on the variable
object and let their values be the values passed as arguments to the function.

• For any function declarations, add corresponding properties on the variable
object whose values are the functions. If a function declaration uses the same
identifier as one of the formal parameters, the property is overwritten.

• For any variable declarations, add corresponding properties on the variable
object and initialize the properties to undefined, regardless of how the
variables are initialized in source code. If a variable uses the same identifier
as an already defined property (i.e., a parameter or function), do not
overwrite it.

 From the Library of WoweBook.Com

ptg

82 Functions

The effects of this algorithm is known as hoisting of functions and variable
declarations. Note that although functions are hoisted in their entirety, variables
only have their declaration hoisted. Initialization happens where defined in source
code. This means that the code in Listing 5.12 is interpreted as Listing 5.13.

Listing 5.13 Function scope after hoisting

"test scope": function () {
function sum() {
var i;
var l;

assertUndefined(i);

/* ... */
}

sum(1, 2, 3, 4, 5);
}

This explains why accessing the i variable before the var statement yields
undefined whereas accessing some arbitrary variable results in a reference error.
The reference error is further explained by how the scope chain works.

5.3.3 The Activation Object
The variable object does not explain why the arguments object is available inside
the function. This object is a property of another object associated with execution
contexts, the activation object. Note that both the activation object and the variable
object are purely a specification mechanism, and cannot be reached by JavaScript
code. For the purposes of identifier resolution, i.e., variable and function resolution,
the activation object and the variable object are the same object. Because properties
of the variable object are available as local variables inside an execution context, and
because the variable object and the activation object is the same object, function
bodies can reach the arguments object as if it was a local variable.

5.3.4 The Global Object
Before running any code, the JavaScript engine creates a global object whose initial
properties are the built-ins defined by ECMAScript, such as Object, String,
Array and others, in addition to host defined properties. Browser implementations
of JavaScript provide a property of the global object that is itself the global object,
namely window.

 From the Library of WoweBook.Com

ptg

5.3 Scope and Execution Context 83

In addition to the window property (in browsers), the global object can be
accessed as this in the global scope. Listing 5.14 shows how window relates to
the global object in browsers.

Listing 5.14 The global object and window

var global = this;

TestCase("GlobalObjectTest", {
"test window should be global object": function () {

assertSame(global, window);
assertSame(global.window, window);
assertSame(window.window, window);

}
});

In the global scope, the global object is used as the variable object, meaning
that declaring variables using the var keyword results in corresponding properties
on the global object. In other words, the two assignments in Listing 5.15 are almost
equivalent.

Listing 5.15 Assigning properties on the global object

var assert = function () { /* ... */ };
this.assert = function () { /* ... */ };

These two statements are not fully equivalent, because the variable declaration
is hoisted, whereas the property assignment is not.

5.3.5 The Scope Chain
Whenever a function is called, control enters a new execution context. This is even
true for recursive calls to a function. As we’ve seen, the activation object is used for
identifier resolution inside the function. In fact, identifier resolution occurs through
the scope chain, which starts with the activation object of the current execution
context. At the end of the scope chain is the global object.

Consider the simple function in Listing 5.16. Calling it with a number results
in a function that, when called, adds that number to its argument.

Listing 5.16 A function that returns another function

function adder(base) {
return function (num) {

 From the Library of WoweBook.Com

ptg

84 Functions

return base + num;
};

}

Listing 5.17 uses adder to create incrementing and decrementing functions.

Listing 5.17 Incrementing and decrementing functions

TestCase("AdderTest", {
"test should add or subtract one from arg": function () {
var inc = adder(1);
var dec = adder(-1);

assertEquals(3, inc(2));
assertEquals(3, dec(4));
assertEquals(3, inc(dec(3)));

}
});

The scope chain for the inc method contains its own activation object at the
front. This object has a num property, corresponding to the formal parameter. The
base variable, however, is not found on this activation object. When JavaScript
does identifier resolution, it climbs the scope chain until it has no more objects.
When base is not found, the next object in the scope chain is tried. The next
object is the activation object created for adder, where in fact the base property
is found. Had the property not been available here, identifier resolution would have
continued on the next object in the scope chain, which in this case is the global
object. If the identifier is not found on the global object, a reference error is thrown.

Inside the functions created and returned from adder, the base variable is
known as a free variable, which may live on after the adder function has finished
executing. This behavior is also known as a closure, a concept we will dig deeper
into in the next chapter, Chapter 6, Applied Functions and Closures.

Functions created by the Function constructor have different scoping rules.
Regardless of where they are created, these functions only have the global object in
their scope chain, i.e., the containing scope is not added to their scope chain. This
makes the Function constructor useful to avoid unintentional closures.

5.3.6 Function Expressions Revisited
With a better understanding of the scope chain we can revisit function expressions
and gain a better understanding of how they work. Function expressions can be use-
ful when we need to conditionally define a function, because function declarations

 From the Library of WoweBook.Com

ptg

5.3 Scope and Execution Context 85

are not allowed inside blocks, e.g., in an if-else statement. A common situation in
which a function might be conditionally defined is when defining functions that
will smooth over cross-browser differences, by employing feature detection. In
Chapter 10, Feature Detection, we will discuss this topic in depth, and an example
could be that of adding a trim function that trims strings. Some browsers offer
the String.prototype.trimmethod, and we’d like to use this if it’s available.
Listing 5.18 shows a possible way to implement such a function.

Listing 5.18 Conditionally defining a function

var trim;

if (String.prototype.trim) {
trim = function (str) {

return str.trim();
};

} else {
trim = function (str) {

return str.replace(/^\s+|\s+$/g, "");
};

}

Using function declarations in this case would constitute a syntax error as per
the ECMAScript specification. However, most browsers will run the example in
Listing 5.19.

Listing 5.19 Conditional function declaration

// Danger! Don't try this at home
if (String.prototype.trim) {
function trim(str) {

return str.trim();
}

} else {
function trim(str) {

return str.replace(/^\s+|\s+$/g, "");
}

}

When this happens, we always end up with the second implementation due
to function hoisting—the function declarations are hoisted before executing the
conditional statement, and the second implementation always overwrites the first.
An exception to this behavior is found in Firefox, which actually allows function

 From the Library of WoweBook.Com

ptg

86 Functions

statments as a syntax extension. Syntax extensions are legal in the spec, but not
something to rely on.

The only difference between the function expressions and function declara-
tions above is that the functions created with declarations have names. These
names are useful both to call functions recursively, and even more so in debug-
ging situations. Let’s rephrase the trim method and rather define it directly on the
String.prototype object for the browsers that lack it. Listing 5.20 shows an
updated example.

Listing 5.20 Conditionally providing a string method

if (!String.prototype.trim) {
String.prototype.trim = function () {
return this.replace(/^\s+|\s+$/g, "");

};
}

With this formulation we can always trim strings using" string ".trim()

regardless of whether the browser supports the method natively. If we build a large
application by defining methods like this, we will have trouble debugging it, because,
e.g., Firebug stack traces will show a bunch of calls to anonymous functions, making
it hard to navigate and use to locate the source of errors. Unit tests usually should
have our backs, but readable stack traces are valuable at any rate.

Named function expressions solve this problem, as Listing 5.21 shows.

Listing 5.21 Using a named function expression

if (!String.prototype.trim) {
String.prototype.trim = function trim() {
return this.replace(/^\s+|\s+$/g, "");

};
}

Named function expressions differ somewhat from function declarations; the
identifier belongs to the inner scope, and should not be visible in the defining scope.
Unfortunately, Internet Explorer does not respect this. In fact, Internet Explorer
does not do well with named function expressions at all, as side effects of the above
example show in Listing 5.22.

Listing 5.22 Named function expressions in Internet Explorer

// Should throw a ReferenceError, true in IE
assertFunction(trim);

 From the Library of WoweBook.Com

ptg

5.4 The this Keyword 87

if (!String.prototype.trim) {
String.prototype.trim = function trim() {

return this.replace(/^\s+|\s+$/g, "");
};

}

// Should throw a ReferenceError, true in IE
assertFunction(trim);

// Even worse: IE creates two different function objects
assertNotSame(trim, String.prototype.trim);

This is a bleak situation; when faced with named function expressions, Internet
Explorer creates two distinct function objects, leaks the identifier to the containing
scope, and even hoists one of them. These discrepancies make dealing with named
function expressions risky business that can easily introduce obscure bugs. By as-
signing the function expression to a variable with the same name, the duplicated
function object can be avoided (effectively overwritten), but the scope leak and
hoisting will still be there.

I tend to avoid named function expressions, favoring function declarations
inside closures, utilizing different names for different branches if necessary. Of
course, function declarations are hoisted and available in the containing scope as
well—the difference is that this is expected behavior for function declarations,
meaning no nasty surprises. The behavior of function declarations are known and
predictable across browsers, and need no working around.

5.4 The this Keyword
JavaScript’s this keyword throws many seasoned developers off. In most object
oriented languages, this (or self) always points to the receiving object. In most
object oriented languages, using this inside a method always means the object on
which the method was called. This is not necessarily true in JavaScript, even though
it is the default behavior in many cases. The method and method call in Listing 5.23
has this expected behavior.

Listing 5.23 Unsurprising behavior of this

var circle = {
radius: 6,

diameter: function () {
return this.radius * 2;

 From the Library of WoweBook.Com

ptg

88 Functions

}
};

TestCase("CircleTest", {
"test should implicitly bind to object": function () {

assertEquals(12, circle.diameter());
}

});

The fact that this.radius is a reference to circle.radius inside
circle.diameter should not surprise you. The example in Listing 5.24 behaves
differently.

Listing 5.24 The this value is no longer the circle object

"test implicit binding to the global object": function () {
var myDiameter = circle.diameter;
assertNaN(myDiameter());

// WARNING: Never ever rely on implicit globals
// This is just an example
radius = 2;
assertEquals(4, myDiameter());

}

This example reveals that it is the caller that decides the value of this. In fact,
this detail was left out in the previous discussion about the execution context. In
addition to creating the activation and variable objects, and appending to the scope
chain, the this value is also decided when entering an execution context. this
can be provided to a method either implicitly or explicitly.

5.4.1 Implicitly Setting this
this is set implicitly when calling a function using parentheses; calling it as a
function causes this to be set to the global object; calling it as a method causes
this to be the object through which the function is called. “Calling the function as
a method” should be understood as calling the function as a property of an object.
This is a highly useful feature, because it allows JavaScript objects to share function
objects and still have them execute on the right object.

For instance, to borrow array methods for the arguments object as discussed
previously, we can simply create a property on the object whose value is the method
we want to execute, and execute it through arguments, implicitly setting this
to arguments. Listing 5.25 shows such an example.

 From the Library of WoweBook.Com

ptg

5.4 The this Keyword 89

Listing 5.25 Calling a function as a method on an object

function addToArray() {
var targetArr = arguments[0];
arguments.slice = Array.prototype.slice;
var add = arguments.slice(1);

return targetArr.concat(add);
}

Calling the addToArray function will work exactly as the one presented in
Listing 5.8. The ECMAScript specification specifically calls for many built-in meth-
ods to be generic, allowing them to be used with other objects that exhibit the right
qualities. For instance, the arguments object has both a length property and
numeric indexes, which satisfies Array.prototype.slice’s requirements.

5.4.2 Explicitly Setting this
When all we want is to control the value of this for a specific method call, it
is much better to explicitly do so using the function’s call or apply methods.
The Function.prototype.call method calls a function with the first ar-
gument as this. Additional arguments are passed to the function when calling
it. The first example of addToArray in Listing 5.8 used this method call Ar-
ray.prototype.slice with arguments as this. Another example can be
found in our previous circle example, as Listing 5.26 shows.

Listing 5.26 Using call

assertEquals(10, circle.diameter.call({ radius: 5 }));

Here we pass an object literal that defines a radius property as the this
when calling circle.diameter.

5.4.3 Using Primitives As this
The first argument to call can be any object, even null. When passing null,
the global object will be used as the this value. As we will see in Chapter 8,
ECMAScript 5th Edition, this is about to change—in ECMAScript5 strict mode,
passing null as the this value causes this to be null, not the global object.

When passing primitive types, such as a string or boolean, as the this value,
the value is wrapped in an object. This can be troublesome, e.g., when calling

 From the Library of WoweBook.Com

ptg

90 Functions

methods on booleans. Listing 5.27 shows an example in which this might produce
unexpected results.

Listing 5.27 Calling methods with booleans as this

Boolean.prototype.not = function () {
return !this;

};

TestCase("BooleanTest", {
"test should flip value of true": function () {
assertFalse(true.not());
assertFalse(Boolean.prototype.not.call(true));

},

"test should flip value of false": function () {
// Oops! Both fail, false.not() == false
assertTrue(false.not());
assertTrue(Boolean.prototype.not.call(false));

}
});

This method does not work as expected because the primitive booleans are
converted to Boolean objects when used as this. Boolean coercion of an object
always produces true, and using the unary logical not operator on true unsur-
prisingly results in false. ECMAScript 5 strict mode fixes this as well, by avoiding
the object conversion before using a value as this.

The apply method is similar to call, except it only expects two arguments;
the first argument is the this value as with call and its second argument is an
array of arguments to pass to the function being called. The second argument does
not need to be an actual array object; any array-like object will do, meaning that
apply can be used to chain function calls by passing arguments as the second
argument to apply.

As an example, apply could be used to sum all numbers in an array. First con-
sider the function in Listing 5.28, which accepts an arbitrary amount of arguments,
assumes they’re numbers, and returns the sum.

Listing 5.28 Summing numbers

function sum() {
var total = 0;

for (var i = 0, l = arguments.length; i < l; i++) {
total += arguments[i];

 From the Library of WoweBook.Com

ptg

5.5 Summary 91

}

return total;
}

Listing 5.29 shows two test cases for this method. The first test sums a series of
numbers by calling the function with parentheses, whereas the second test sums an
array of numbers via apply.

Listing 5.29 Summing numbers with apply

TestCase("SumTest", {
"test should sum numbers": function () {

assertEquals(15, sum(1, 2, 3, 4, 5));
assertEquals(15, sum.apply(null, [1, 2, 3, 4, 5]));

}
});

Remember, passing null as the first argument causes this to implicitly bind
to the global object, which is also the case when the function is called as in the first
test. ECMAScript 5 does not implicitly bind the global object, causing this to be
undefined in the first call and null in the second.

call and apply are invaluable tools when passing methods as callbacks to
other functions. In the next chapter we will implement a companion method,
Function.prototype.bind, which can bind an object as this to a given
function without calling it immediately.

5.5 Summary
In this chapter we have covered the theoretical basics of JavaScript functions. We
have seen how to create functions, how to use them as objects, how to call them,
and how to manipulate arguments and the this value.

JavaScript functions differ from functions or methods in many other languages
in that they are first class objects, and in the way the execution context and scope
chain work. Also, controlling the this value from the caller may be an unfamiliar
way to work with functions, but as we’ll see throughout this book, can be very
useful.

In the next chapter we will continue our look at functions and study some more
interesting use cases as we dive into the concept known as closures.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

6Applied Functions
and Closures

In the previous chapter we discussed the theoretical aspects of JavaScript func-
tions, familiarizing ourselves with execution contexts and the scope chain. JavaScript
supports nested functions, which allows for closures that can keep private state, and
can be used for anything from ad hoc scopes to implementing memoization, function
binding, modules and stateful functions, and objects.

In this chapter we will work through several examples of how to make good
use of JavaScript functions and closures.

6.1 Binding Functions
When passing methods as callbacks, the implicit this value is lost unless the object
on which it should execute is passed along with it. This can be confusing unless the
semantics of this are familiar.

6.1.1 Losing this: A Lightbox Example
To illustrate the problem at hand, assume we have a “lightbox” object. A lightbox
is simply an HTML element that is overlaid the page, and appears to float above the
rest of the page, much like a popup, only with a web 2.0 name. In this example the
lightbox pulls content from a URL and displays it in adiv element. For convenience,
an anchorLightbox function is provided, which turns an anchor element into a

93

 From the Library of WoweBook.Com

ptg

94 Applied Functions and Closures

lightbox toggler; when the anchor is clicked, the page it links to is loaded into a div
that is positioned above the current page. Listing 6.1 shows a rough outline.

Listing 6.1 Lightbox pseudo code

var lightbox = {
open: function () {
ajax.loadFragment(this.url, {

target: this.create()
});

return false;
},

close: function () { /* ... */ },
destroy: function () { /* ... */ },

create: function () {
/* Create or return container */

}
};

function anchorLightbox(anchor, options) {
var lb = Object.create(lightbox);
lb.url = anchor.href;
lb.title = anchor.title || anchor.href;
Object.extend(lb, options);
anchor.onclick = lb.open;

return lb;
}

Note that the code will not run as provided; it’s simply a conceptual exam-
ple. The details of Object.create and Object.extend will be explained in
Chapter 7, Objects and Prototypal Inheritance, and the ajax.loadFragment

method can be assumed to load the contents of a URL into the DOM element
specified by the target option. The anchorLightbox function creates a new
object that inherits from the lightbox object, sets crucial properties, and returns
the new object. Additionally, it assigns an event handler for the click event. Using
DOM0 event properties will do for now but is generally not advisable; we’ll see a
better way to add event handlers in Chapter 10, Feature Detection.

Unfortunately, the expected behavior fails when the link is clicked. The reason
is that when we assign the lb.open method as the event handler, we lose the
implicit binding of this to the lb object, which only occurs when the function is

 From the Library of WoweBook.Com

ptg

6.1 Binding Functions 95

called as a property of it. In the previous chapter we saw how call and apply can
be used to explicitly set the this value when calling a function. However, those
methods only help at call time.

6.1.2 Fixing this via an Anonymous Function
To work around the problem, we could assign an anonymous function as the event
handler that when executed calls the open method, making sure the correct this
value is set. Listing 6.2 shows the workaround.

Listing 6.2 Calling open through an anonymous proxy function

function anchorLightbox(anchor, options) {
/* ... */

anchor.onclick = function () {
return lb.open();

};

/* ... */
}

Assigning the inner function as the event handler creates a closure. Normally,
when a function exits, the execution context along with its activation and variable
object are no longer referenced, and thus are available for garbage collection. How-
ever, the moment we assign the inner function as the event handler something in-
teresting happens. Even after the anchorLightbox finishes, the anchor object,
through its onclick property, still has access to the scope chain of the execution
context created for anchorLightbox. The anonymous inner function uses the
lb variable, which is neither a parameter nor a local variable; it is a free variable,
accessible through the scope chain.

Using the closure to handle the event, effectively proxying the method call, the
lightbox anchor should now work as expected. However, the manual wrapping of
the method call doesn’t feel quite right. If we were to define several event handlers
in the same way, we would introduce duplication, which is error-prone and likely to
make code harder to maintain, change, and understand. A better solution is needed.

6.1.3 Function.prototype.bind

ECMAScript 5 provides the Function.prototype.bind function, which is
also found in some form in most modern JavaScript libraries. The bind method
accepts an object as its first argument and returns a function object that, when

 From the Library of WoweBook.Com

ptg

96 Applied Functions and Closures

called, calls the original function with the bound object as the this value. In other
words, it provides the functionality we just implemented manually, and could be
considered the deferred companion to call and apply. Using bind, we could
update anchorLightbox as shown in Listing 6.3.

Listing 6.3 Using bind

function anchorLightbox(anchor, options) {
/* ... */

anchor.onclick = lb.open.bind(lb);

/* ... */
}

Because not all browsers yet implement this highly useful function, we can
conditionally provide our own implementation for those browsers that lack it.
Listing 6.4 shows a simple implementation.

Listing 6.4 Implementation of bind

if (!Function.prototype.bind) {
Function.prototype.bind = function (thisObj) {
var target = this;

return function () {
return target.apply(thisObj, arguments);

};
};

}

The implementation returns a function—a closure—that maintains its reference
to the thisObj argument and the function itself. When the returned function is
executed, the original function is called withthis explicitly set to the bound object.
Any arguments passed to the returned function is passed on to the original function.

Adding the function to Function.prototype means it will be available
as a method on all function objects, so this refers to the function on which the
method is called. In order to access this value we need to store it in a local variable
in the outer function. As we saw in the previous chapter, this is calculated upon
entering a new execution context and is not part of the scope chain. Assigning it to
a local variable makes it accessible through the scope chain in the inner function.

 From the Library of WoweBook.Com

ptg

6.1 Binding Functions 97

6.1.4 Binding with Arguments
According to the ECMAScript 5 specification (and, e.g., the Prototype.js implemen-
tation), bind should support binding functions to arguments as well as the this
value. Doing so means we can “prefill” a function with arguments, bind it to an
object, and pass it along to be called at some later point. This can prove extremely
useful for event handlers, in cases in which the handling method needs arguments
known at bind time. Another useful case for binding arguments is deferring some
computation, e.g., by passing a callback to setTimeout.

Listing 6.5 shows an example in which bind is used to prefill a function with
arguments to defer a benchmark with setTimeout. The bench function calls
the function passed to it 10,000 times and logs the result. Rather than manually
carrying out the function calls in an anonymous function passed to setTimeout,
we use bind to run all the benchmarks in the benchmarks array by binding the
forEach method to the array and the bench function as its argument.

Listing 6.5 Deferring a method call using bind and setTimeout

function bench(func) {
var start = new Date().getTime();

for (var i = 0; i < 10000; i++) {
func();

}

console.log(func, new Date().getTime() - start);
}

var benchmarks = [
function forLoop() { /* ... */ },
function forLoopCachedLength() { /* ... */ },
/* ... */

];

setTimeout(benchmarks.forEach.bind(benchmarks, bench), 500);

The above listing will cause the benchmarks to be run after 500 milliseconds.
The keen reader will recognize the benchmarks from Chapter 4, Test to Learn.

Listing 6.6 shows one possible way of implementing bind such that it allows
arguments bound to the function as well as the this value.

 From the Library of WoweBook.Com

ptg

98 Applied Functions and Closures

Listing 6.6 bind with arguments support

if (!Function.prototype.bind) {
Function.prototype.bind = function (thisObj) {
var target = this;
var args = Array.prototype.slice.call(arguments, 1);

return function () {
var received = Array.prototype.slice.call(arguments);

return target.apply(thisObj, args.concat(received));
};

};
}

This implementation is fairly straightforward. It keeps possible arguments
passed to bind in an array, and when the bound function is called it concatenates
this array with possible additional arguments received in the actual call.

Although simple, the above implementation is a poor performer. It is likely that
bind will be used most frequently to simply bind a function to an object, i.e., no
arguments. In this simple case, converting and concatenating the arguments will
only slow down the call, both at bind time and at call time for the bound function.
Fortunately, optimizing the different cases is pretty simple. The different cases are:

• Binding a function to an object, no arguments

• Binding a function to an object and one or more arguments

• Calling a bound function without arguments

• Calling a bound function with arguments

The two latter steps occur for both of the former steps, meaning that there
are two cases to cater for at bind time, and four at call time. Listing 6.7 shows an
optimized function.

Listing 6.7 Optimized bind

if (!Function.prototype.bind) {
(function () {
var slice = Array.prototype.slice;

Function.prototype.bind = function (thisObj) {
var target = this;

if (arguments.length > 1) {

 From the Library of WoweBook.Com

ptg

6.1 Binding Functions 99

var args = slice.call(arguments, 1);

return function () {
var allArgs = args;

if (arguments.length > 0) {
allArgs = args.concat(slice.call(arguments));

}

return target.apply(thisObj, allArgs);
};

}

return function () {
if (arguments.length > 0) {

return target.apply(thisObj, arguments);
}

return target.call(thisObj);
};

};
}());

}

This implementation is somewhat more involved, but yields much better per-
formance, especially for the simple case of binding a function to an object and no
arguments and calling it with no arguments.

Note that the implementation given here is missing one feature from the EC-
MAScript 5 specification. The spec states that the resulting function should behave
as the bound function when used in a new expression.

6.1.5 Currying
Currying is closely related to binding, because they both offer a way to partially
apply a function. Currying differs from binding in that it only pre-fills arguments; it
does not set the this value. This is useful, because it allows us to bind arguments
to functions and methods while maintaining their implicit this value. The implicit
this allows us to use currying to bind arguments to functions on an object’s proto-
type, and still have the function execute with a given object as itsthis value. Listing
6.8 shows an example of implementing String.prototype.trim in terms of
String.prototype.replace using Function.prototype.curry.

 From the Library of WoweBook.Com

ptg

100 Applied Functions and Closures

Listing 6.8 Implementing a method in terms of another one and curry

(function () {
String.prototype.trim =
String.prototype.replace.curry(/^\s+|\s+$/g, "");

TestCase("CurryTest", {
"test should trim spaces": function () {
var str = " some spaced string ";

assertEquals("some spaced string", str.trim());
}

});
}());

The implementation of curry in Listing 6.9 resembles the bind implementa-
tion from before.

Listing 6.9 Implementing curry

if (!Function.prototype.curry) {
(function () {
var slice = Array.prototype.slice;

Function.prototype.curry = function () {
var target = this;
var args = slice.call(arguments);

return function () {
var allArgs = args;

if (arguments.length > 0) {
allArgs = args.concat(slice.call(arguments));

}

return target.apply(this, allArgs);
};

};
}());

}

There’s no optimization for the case in which curry does not receive argu-
ments, because calling it without arguments is senseless and should be avoided.

 From the Library of WoweBook.Com

ptg

6.2 Immediately Called Anonymous Functions 101

6.2 Immediately Called Anonymous Functions
A common practice in JavaScript is to create anonymous functions that are imme-
diately called. Listing 6.10 shows a typical incarnation.

Listing 6.10 An immediately called anonymous function

(function () {
/* ... */

}());

The parentheses wrapping the entire expression serves two purposes. Leaving
them out causes the function expression to be seen as a function declaration, which
would constitute a syntax error without an identifier. Furthermore, expressions (as
opposed to declarations) cannot start with the word “function” as it might make
them ambiguous with function declarations, so giving the function a name and
calling it would not work either. Thus, the parentheses are necessary to avoid syntax
errors. Additionally, when assigning the return value of such a function to a variable,
the leading parentheses indicates that the function expression is not what’s returned
from the expression.

6.2.1 Ad Hoc Scopes
JavaScript only has global scope and function scope, which may sometimes cause
weird problems. The first problem we need to avoid is leaking objects into the
global scope, because doing so increases our chances of naming collisions with
other scripts, such as third party libraries, widgets, and web analytics scripts.

6.2.1.1 Avoiding the Global Scope

We can avoid littering the global scope with temporary variables (e.g., loop variables
and other intermittent variables) by simply wrapping our code in a self-executing
closure. Listing 6.11 shows an example of using the aforementioned lightbox object;
every anchor element in the document with the class name lightbox is picked up
and passed to the anchorLightbox function.

Listing 6.11 Creating lightboxes

(function () {
var anchors = document.getElementsByTagName("a");
var regexp = /(^|\s)lightbox(\s|$)/;

for (var i = 0, l = anchors.length; i < l; i++) {

 From the Library of WoweBook.Com

ptg

102 Applied Functions and Closures

if (regexp.test(anchors[i].className)) {
anchorLightbox(anchors[i]);

}
}

}());

6.2.1.2 Simulating Block Scope

Another useful case for immediately called closures is when creating closures inside
loops. Assume that we had opted for a different design of our lightbox widget,
in which there was only one object, and it could be used to open any number
of lightboxes. In this case we would need to add event handlers manually, as in
Listing 6.12.

Listing 6.12 Adding event handlers the wrong way

(function () {
var anchors = document.getElementsByTagName("a");
var controller = Object.create(lightboxController);
var regexp = /(^|\s)lightbox(\s|$)/;

for (var i = 0, l = anchors.length; i < l; i++) {
if (regexp.test(anchors[i].className)) {

anchors[i].onclick = function () {
controller.open(anchors[i]);
return false;

};
}

}
}());

This example will not work as expected. The event handler attached to the links
forms a closure that can access the variables local to the outer function. However,
all the closures (one for each anchor) keep a reference to the same scope; clicking
any of the anchors will cause the same lightbox to open. When the event handler
for an anchor is called, the outer function has changed the value of i since it was
assigned, thus it will not trigger the correct lightbox to open.

To fix this we can use a closure to capture the anchor we want to associate with
the event handler by storing it in a variable that is not available to the outer function,
and thus cannot be changed by it. Listing 6.13 fixes the issue by passing the anchor
as argument to a new closure.

 From the Library of WoweBook.Com

ptg

6.2 Immediately Called Anonymous Functions 103

Listing 6.13 Fixing scoping issues with nested closures

(function () {
var anchors = document.getElementsByTagName("a");
var controller = Object.create(lightboxController);
var regexp = /(^|\s)lightbox(\s|$)/;

for (var i = 0, l = anchors.length; i < l; i++) {
if (regexp.test(anchors[i].className)) {
(function (anchor) {

anchor.onclick = function () {
controller.open(anchor);
return false;

};
}(anchors[i]));

}
}

}());

anchor is now a formal parameter to the inner closure, whose variable object
cannot be accessed or tampered with by the containing scope. Thus, the event
handlers will work as expected.

Examples aside, closures in loops are generally a performance issue waiting
to happen. Most problems can be better solved by avoiding the nested closure,
for instance, by using dedicated functions to create the closure like we did in
Listing 6.11. When assigning event handlers, there is even another problem with
nesting functions like this, because the circular reference between the DOM element
and its event handler may cause memory leaks.

6.2.2 Namespaces
A good strategy to stay out of the global scope is to use some kind of namespacing.
JavaScript does not have native namespaces, but because it offers such useful objects
and functions it does not need them either. To use objects as namespaces, simply
define a single object in the global scope and implement additional functions and
objects as properties of it. Listing 6.14 shows how we could possibly implement the
lightbox object inside our own tddjs namespace.

Listing 6.14 Using objects as namespaces

var tddjs = {
lightbox: { /* ... */ },

 From the Library of WoweBook.Com

ptg

104 Applied Functions and Closures

anchorLightbox: function (anchor, options) {
/* ... */

}
};

In larger libraries, we might want better organization than simply defining
everything inside the same object. For example, the lightbox might live in tddjs.
ui, whereas ajax functionality could live in tddjs.ajax. Many libraries provide
some kind of namespace function to help with this kind of organizing. Organizing
all code inside a single file is not a sound strategy, and when splitting code inside the
same object across several files, knowing if the namespace object is already created
becomes an issue.

6.2.2.1 Implementing Namespaces

For this book we will use the tddjs object to namespace reusable code that is
shared between chapters. To help with namespacing we will implement our own
function that will loop each level in the namespace—provided as a string—creating
objects that don’t exist. Listing 6.15 shows a few test cases demonstrating its use
and side-effects.

Listing 6.15 Demonstrating the namespace function

TestCase("NamespaceTest", {
tearDown: function () {
delete tddjs.nstest;

},

"test should create non-existent object":
function () {
tddjs.namespace("nstest");

assertObject(tddjs.nstest);
},

"test should not overwrite existing objects":
function () {
tddjs.nstest = { nested: {} };
var result = tddjs.namespace("nstest.nested");

assertSame(tddjs.nstest.nested, result);
},

"test only create missing parts":

 From the Library of WoweBook.Com

ptg

6.2 Immediately Called Anonymous Functions 105

function () {
var existing = {};
tddjs.nstest = { nested: { existing: existing } };
var result = tddjs.namespace("nstest.nested.ui");

assertSame(existing, tddjs.nstest.nested.existing);
assertObject(tddjs.nstest.nested.ui);

}
});

namespace is expected to be implemented as a method on the global tddjs
object, and manages namespaces inside it. This waytddjs is completely sandboxed
inside its own namespace, and using it along with immediately called closures will
ensure we don’t leak properties to the global object. Its implementation is found
in Listing 6.16. Save it in a file called tdd.js; we will add more utilities to this
file/namespace throughout the book.

Listing 6.16 The namespace function

var tddjs = (function () {
function namespace(string) {

var object = this;
var levels = string.split(".");

for (var i = 0, l = levels.length; i < l; i++) {
if (typeof object[levels[i]] == "undefined") {

object[levels[i]] = {};
}

object = object[levels[i]];
}

return object;
}

return {
namespace: namespace

};
}());

This implementation shows a few interesting uses of functions. It wraps the
entire implementation in a closure, returning an object literal that is assigned to the
global tddjs object.

Avoiding the trouble with named function expressions and taking advantage
of the fact that the closure creates a local scope, we define namespace using a

 From the Library of WoweBook.Com

ptg

106 Applied Functions and Closures

function declaration and then assign it to the namespace property of the returned
object.

The namespace function starts resolving namespaces from this. Doing so
allows the function to be easily borrowed to create namespaces in other objects
than tddjs. Listing 6.17 shows an example of borrowing the method to create
namespaces inside another object.

Listing 6.17 Creating custom namespaces

"test namespacing inside other objects":
function () {
var custom = { namespace: tddjs.namespace };
custom.namespace("dom.event");

assertObject(custom.dom.event);
assertUndefined(tddjs.dom);

}

As the test shows, the tddjs object is not modified when calling the method
through another object, which should not be surprising.

6.2.2.2 Importing Namespaces

When organizing code in namespaces, we might tire from all the typing. Program-
mers are lazy creatures, and typing tddjs.ajax.request might be too much
to ask. As we already saw, JavaScript does not have native namespaces, and so there
is no import keyword to import a set of objects into the local scope. Luckily,
closures have local scope, which means that we can simply assign nested objects to
local variables to “import” them. Listing 6.18 shows an example.

Listing 6.18 Using a local variable to “import” a namespace

(function () {
var request = tddjs.ajax.request;

request(/* ... */);
/* ... */

}());

Another advantage of this technique is that, unlike with global variables, local
variable identifiers can safely be minified. Thus, using local aliases can help reduce
the size of scripts in production as well.

Be careful when making local aliases to methods as in the above example. If the
method is dependent on its this object, such local importing effectively breaks

 From the Library of WoweBook.Com

ptg

6.3 Stateful Functions 107

implicit binding. Because importing namespaces effectively caches the object inside
the closure, it can also cause trouble when trying to mock or stub the imported
object.

Using namespaces is a highly useful way to organize code in a clean way without
tripping up the global namespace. You might worry that the property lookups
come with a performance penalty, which they do, but compared with, e.g., DOM
manipulation, the impact of these namespaces will be minute.

6.3 Stateful Functions
A closure can maintain state through its free variables. The scope chain that allows
access to these free variables is only accessible from within the scope chain itself,
which means that free variables by definition are private. In Chapter 7, Objects and
Prototypal Inheritance, we will see how this can be used to create objects with private
state, a feature not otherwise offered by JavaScript (i.e., no private keyword), in
a pattern popularized as “the module pattern.”

In this section we will use closures to hide implementation details for functions.

6.3.1 Generating Unique Ids
The ability to generate unique ids for any given object is useful whenever we want
to use objects and functions as, e.g., property keys in objects. As we’ll see in the
next chapter, property identifiers in JavaScript are always coerced to strings; so even
though we can set a property whose key is an object, it won’t do what we expect.

Another useful application of unique ids in the case of DOM elements. Storing
data as properties of DOM elements can cause memory leaks and other undesired
behavior. One way to avoid these problems, currently employed by most major
libraries, is to generate a unique id for an element, and keep an element storage
separate from the element. This allows for an API that can get and set data on the
element without actually storing data other than the unique id directly on it.

As an example of a stateful closure, we will implement a tddjs.uid method.
The method accepts an object and returns a numeric id, which is stored in a property
on the object. Listing 6.19 shows a few test cases describing its behavior.

Listing 6.19 Specification of the uid function

TestCase("UidTest", {
"test should return numeric id":
function () {

var id = tddjs.uid({});

 From the Library of WoweBook.Com

ptg

108 Applied Functions and Closures

assertNumber(id);
},

"test should return consistent id for object":
function () {

var object = {};
var id = tddjs.uid(object);

assertSame(id, tddjs.uid(object));
},

"test should return unique id":
function () {

var object = {};
var object2 = {};
var id = tddjs.uid(object);

assertNotEquals(id, tddjs.uid(object2));
},

"test should return consistent id for function":
function () {

var func = function () {};
var id = tddjs.uid(func);

assertSame(id, tddjs.uid(func));
},

"test should return undefined for primitive":
function () {

var str = "my string";

assertUndefined(tddjs.uid(str));
}

});

The tests can be run with JsTestDriver, as described in Chapter 3, Tools of
the Trade. This is not an exhaustive test suite, but it shows the basic behavior the
method will support. Note that passing primitives to the function will not work as
assigning properties to primitives does not actually add properties to the primitive—
the primitive is wrapped in an object for the property access, which is immediately
thrown away, i.e., new String("my string").__uid = 3.

The implementation is the interesting part. The uid method generates ids by
looking up a counter that is incremented every time an id is requested. We could store
this id as a property of the uid function object, but that would make it susceptible

 From the Library of WoweBook.Com

ptg

6.3 Stateful Functions 109

to outside modification, which could cause the method to return the same id twice,
breaking its contract. By using a closure, we can store the counter in a free variable
that is protected from outside access. Listing 6.20 shows the implementation.

Listing 6.20 Storing state in a free variable

(function () {
var id = 0;

function uid(object) {
if (typeof object.__uid != "number") {
object.__uid = id++;

}

return object.__uid;
}

if (typeof tddjs == "object") {
tddjs.uid = uid;

}
}());

The implementation uses an immediately called anonymous closure to create a
scope in which the id variable can live. The uid function, which has access to this
variable, is exposed to the world as the tddjs.uid method. The typeof check
avoids a reference error if for some reason the file containing the tddjs object has
not loaded.

6.3.2 Iterators
Iterators are objects that encapsulate the enumeration of a collection object. They
provide a consistent API to traverse any kind of collection, and can provide better
control over iteration than what simple for and while loops can, e.g., by ensuring
that an item is never accessed more than once, that items are accessed strictly
sequential and more. Closures can be used to implement iterators rather effortlessly
in JavaScript. Listing 6.21 shows the basic behavior of the iterators created by
tddjs.iterator.

Listing 6.21 Behavior of the tddjs.iterator method

TestCase("IteratorTest", {
"test next should return first item":
function () {

var collection = [1, 2, 3, 4, 5];

 From the Library of WoweBook.Com

ptg

110 Applied Functions and Closures

var iterator = tddjs.iterator(collection);

assertSame(collection[0], iterator.next());
assertTrue(iterator.hasNext());

},

"test hasNext should be false after last item":
function () {

var collection = [1, 2];
var iterator = tddjs.iterator(collection);

iterator.next();
iterator.next();

assertFalse(iterator.hasNext());
},

"test should loop collection with iterator":
function () {

var collection = [1, 2, 3, 4, 5];
var it = tddjs.iterator(collection);
var result = [];

while (it.hasNext()) {
result.push(it.next());

}

assertEquals(collection, result);
}

});

A possible implementation of the iterator is shown in Listing 6.22.

Listing 6.22 Possible implementation of tddjs.iterator

(function () {
function iterator(collection) {
var index = 0;
var length = collection.length;

function next() {
var item = collection[index++];

return item;
}

function hasNext() {

 From the Library of WoweBook.Com

ptg

6.3 Stateful Functions 111

return index < length;
}

return {
next: next,
hasNext: hasNext

};
}

if (typeof tddjs == "object") {
tddjs.iterator = iterator;

}
}());

The overall pattern should start to look familiar. The interesting parts are the
collection, index and length free variables. The iterator function re-
turns an object whose methods have access to the free variables, and is an imple-
mentation of the module pattern mentioned previously.

The iterator interface was purposely written to imitate that of Java’s iter-
ators. However, JavaScript’s functions have more to offer, and this interface could
be written in a much leaner way, as seen in Listing 6.23.

Listing 6.23 Functional iterator approach

(function () {
function iterator(collection) {

var index = 0;
var length = collection.length;

function next() {
var item = collection[index++];
next.hasNext = index < length;

return item;
}

next.hasNext = index < length;

return next;
}

if (typeof tddjs == "object") {
tddjs.iterator = iterator;

}
}());

 From the Library of WoweBook.Com

ptg

112 Applied Functions and Closures

This implementation simply returns the next function, and assigns hasNext
as a property of it. Every call to next updates the hasNext property. Leveraging
this we can update the loop test to look like Listing 6.24.

Listing 6.24 Looping with functional iterators

"test should loop collection with iterator":
function () {
var collection = [1, 2, 3, 4, 5];
var next = tddjs.iterator(collection);
var result = [];

while (next.hasNext) {
result.push(next());

}

assertEquals(collection, result);
}

6.4 Memoization
Our final closure example will be provided by memoization, a caching technique at
the method level and a popular example of the power of JavaScript functions.

Memoization is a technique that can be employed to avoid carrying out ex-
pensive operations repeatedly, thus speeding up programs. There are a few ways
to implement memoization in JavaScript, and we’ll start with the one closest to the
examples we’ve worked with so far.

Listing 6.25 shows an implementation of the Fibonacci sequence, which uses
two recursive calls to calculate the value at a given point in the sequence.

Listing 6.25 The Fibonacci sequence

function fibonacci(x) {
if (x < 2) {
return 1;

}

return fibonacci(x - 1) + fibonacci(x - 2);
}

The Fibonacci sequence is very expensive, and quickly spawns too many recur-
sive calls for a browser to handle. By wrapping the function in a closure, we can
manually memoize values to optimize this method, as seen in Listing 6.26.

 From the Library of WoweBook.Com

ptg

6.4 Memoization 113

Listing 6.26 Memoizing the Fibonacci sequence in a closure

var fibonacci = (function () {
var cache = {};

function fibonacci(x) {
if (x < 2) {
return 1;

}

if (!cache[x]) {
cache[x] = fibonacci(x - 1) + fibonacci(x - 2);

}

return cache[x];
}

return fibonacci;
}());

This alternative version of fibonacci runs many orders of magnitude faster
than the original one, and by extension is capable of calculating more numbers in
the sequence. However, mixing computation with caching logic is a bit ugly. Again,
we will add a function to Function.prototype to help separate concerns.
The memoize method in Listing 6.27 is capable of wrapping a method, adding
memoization without cluttering the calculation logic.

Listing 6.27 A general purpose memoize method

if (!Function.prototype.memoize) {
Function.prototype.memoize = function () {

var cache = {};
var func = this;

return function (x) {
if (!(x in cache)) {

cache[x] = func.call(this, x);
}

return cache[x];
};

};
}

 From the Library of WoweBook.Com

ptg

114 Applied Functions and Closures

This method offers a clean way to memoize functions, as seen in Listing 6.28.

Listing 6.28 Memoizing the fibonacci function

TestCase("FibonacciTest", {
"test calculate high fib value with memoization":
function () {
var fibonacciFast = fibonacci.memoize();

assertEquals(1346269, fibonacciFast(30));
}

});

The memoizemethod offers a clean solution but unfortunately only deals with
functions that take a single argument. Limiting its use further is the fact that it
blindly coerces all arguments to strings, by nature of property assignment, which
will be discussed in detail in Chapter 7, Objects and Prototypal Inheritance.

To improve the memoizer, we would need to serialize all arguments to use as
keys. One way to do this, which is only slightly more complex than what we already
have, is to simply join the arguments, as Listing 6.29 does.

Listing 6.29 A slightly better memoize method

if (!Function.prototype.memoize) {
Function.prototype.memoize = function () {
var cache = {};
var func = this;
var join = Array.prototype.join;

return function () {
var key = join.call(arguments);

if (!(key in cache)) {
cache[key] = func.apply(this, arguments);

}

return cache[key];
};

};
}

This version will not perform as well as the previous incarnation because it both
calls join and uses apply rather than call, because we no longer can assume
the number of arguments. Also, this version will coerce all arguments to strings
as before, meaning it cannot differentiate between, e.g., "12" and 12 passed as

 From the Library of WoweBook.Com

ptg

6.5 Summary 115

arguments. Finally, because the cache key is generated by joining the parameters
with a comma, string arguments that contain commas can cause the wrong value to
be loaded, i.e., (1, "b") would generate the same cache key as ("1,b").

It is possible to implement a proper serializer that can embed type information
about arguments, and possibly use tddjs.uid to serialize object and function
arguments, but doing so would impact the performance ofmemoize in a noticeable
way such that it would only help out in cases that could presumably be better
optimized in other ways. Besides, serializing object arguments using tddjs.uid,
although simple and fast, would cause the method to possibly assign new properties
to arguments. That would be unexpected in most cases and should at the very least
be properly documented.

6.5 Summary
In this chapter we have worked through a handful of practical function examples
with a special focus on closures. With an understanding of the scope chain from
Chapter 5, Functions, we have seen how inner functions can keep private state in
free variables. Through examples we have seen how to make use of the scope and
state offered by closures to solve a range of problems in an elegant way.

Some of the functions developed in this chapter will make appearances in
upcoming chapters as we build on top of them and add more useful interfaces to
the tddjs object. Throughout the book we will also meet plenty more examples
of using closures.

In the next chapter we will take a look at JavaScript’s objects and gain a bet-
ter understanding of how property access and prototypal inheritance work, how
closures can help in object oriented programming in JavaScript, as well as explore
different ways to create objects and share behavior between them.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

7Objects and Prototypal
Inheritance

JavaScript is an object oriented programming language. However, unlike most
other object oriented languages, JavaScript does not have classes. Instead, JavaScript
offers prototypes and prototype-based inheritance in which objects inherit from other
objects. Additionally, the language offers constructors—functions that create ob-
jects, a fact that often confuses programmers and hides its nature. In this chapter
we’ll investigate how JavaScript objects and properties work. We’ll also study the
prototype chain as well as inheritance, working through several examples in a test-
driven manner.

7.1 Objects and Properties
JavaScript has object literals, i.e., objects can be typed directly into a program using
specific syntax, much like string ("a string literal") and number literals
(42) can be typed directly in a program in most languages. Listing 7.1 shows an
example of an object literal.

Listing 7.1 An object literal

var car = {
model: {

year: "1998",
make: "Ford",
model: "Mondeo"

117

 From the Library of WoweBook.Com

ptg

118 Objects and Prototypal Inheritance

},

color: "Red",
seats: 5,
doors: 5,
accessories: ["Air condition", "Electric Windows"],

drive: function () {
console.log("Vroooom!");

}
};

Incidentally, Listing 7.1 shows a few other literals available in JavaScript as well,
most notably the array literal ([] as opposed to new Array()).

ECMA-262 defines a JavaScript object as an unordered collection of properties.
Properties consist of a name, a value, and a set of attributes. Property names are
either string literals, number literals, or identifiers. Properties may take any value,
i.e., primitives (strings, numbers, booleans, null or undefined) and objects,
including functions. When properties have function objects assigned to them, we
usually refer to them as methods. ECMA-262 also defines a set of internal proper-
ties and methods that are not part of the language, but are used internally by the
implementation. The specification encloses names of these internal properties and
methods in double brackets, i.e., [[Prototype]]. I will use this notation as well.

7.1.1 Property Access
JavaScript properties can be accessed in one of two ways—using dot notation,
car.model.year, or using a style commonly associated with dictionaries or
hashes, car["model"]["year"]. The square bracket notation offers a great
deal of flexibility when looking up properties. It can take any string or expression
that returns a string. This means that you can dynamically figure out the property
name at run-time and look it up on an object directly using the square brackets.
Another benefit of the square bracket notation is that you can access properties
whose name contain characters not allowed in identifiers such as white space. You
can mix dot and bracket notation at will, making it very easy to dynamically look
up properties on an object.

As you might remember, we used property names containing spaces to make
our test case names more human-readable in Chapter 3, Tools of the Trade, as seen in
Listing 7.2.

 From the Library of WoweBook.Com

ptg

7.1 Objects and Properties 119

Listing 7.2 A property name with spaces

var testMethods = {
"test dots and brackets should behave identically":
function () {

var value = "value";
var obj = { prop: value };

assertEquals(obj.prop, obj["prop"]);
}

};

// Grab the test
var name = "test dots and brackets should behave identically";
var testMethod = testMethods[name];

// Mix dot and bracket notation to get number of expected
// arguments for the test method
var argc = testMethods[name].length;

Here we get a test method (i.e., a property) from our object using the square
bracket notation, because the name of the property we are interested in contains
characters that are illegal in identifiers.

It is possible to get and set properties on an object using other values than
string literals, number literals, or identifiers. When you do so, the object will be
converted to a string by its toString method if it exists (and returns a string), or
its valueOf method. Beware that these methods may be implementation-specific
(e.g., for host objects1), and for generic objects the toString method will return
"[object Object]". I recommend you stick to identifiers, string literals, and
number literals for property names.

7.1.2 The Prototype Chain
In JavaScript every object has a prototype. The property is internal and is referred
to as [[Prototype]] in the ECMA-262 specification. It is an implicit reference to the
prototypeproperty of the constructor that created the object. For generic objects
this corresponds to Object.prototype. The prototype may have a prototype of
its own and so on, forming a prototype chain. The prototype chain is used to share
properties across objects in JavaScript, and forms the basis for JavaScript’s inheri-
tance model. This concept is fundamentally different from classical inheritance, in

1. Host objects will be discussed in Chapter 10, Feature Detection.

 From the Library of WoweBook.Com

ptg

120 Objects and Prototypal Inheritance

which classes inherit from other classes, and objects constitute instances of classes.
We’ll approach the subject by continuing our study of property access.

When you read a property on an object, JavaScript uses the object’s internal
[[Get]] method. This method checks if the object has a property of the given
name. If it has, its value is returned. If the object does not have such a property,
the interpreter checks if the object has a [[Prototype]] that is not null (only
Object.prototype has a null [[Prototype]]). If it does, the interpreter will
check whether the prototype has the property in question. If it does, its value is
returned, otherwise the interpreter continues up the prototype chain until it reaches
Object.prototype. If neither the object nor any of the objects in its prototype
has a property of the given name, undefined is returned.

When you assign, or put, a value to an object property, the object’s internal
[[Put]] method is used. If the object does not already have a property of the given
name, one is created and its value is set to the provided value. If the object already
has a property of the same name, its value is set to the one provided.

Assignment does not affect the prototype chain. In fact, if we assign a prop-
erty that already exists on the prototype chain, we are shadowing the prototype’s
property. Listing 7.3 shows an example of property shadowing. To run the test with
JsTestDriver, set up a simple project as described in Chapter 3, Tools of the Trade,
and add a configuration file that loads test/*.js.

Listing 7.3 Inheriting and shadowing properties

TestCase("ObjectPropertyTest", {
"test setting property shadows property on prototype":
function () {
var object1 = {};
var object2 = {};

// Both objects inherit Object.prototype.toString
assertEquals(object1.toString, object2.toString);

var chris = {
name: "Chris",

toString: function () {
return this.name;

}
};

// chris object defines a toString property that is
// not the same object as object1 inherits from

 From the Library of WoweBook.Com

ptg

7.1 Objects and Properties 121

// Object.prototype
assertFalse(object1.toString === chris.toString);

// Deleting the custom property unshadows the
// inherited Object.prototype.toString
delete chris.toString;
assertEquals(object1.toString, chris.toString);

}
});

As seen in Listing 7.3, object1 and object2 don’t define a toString

property and so they share the same object—the Object.prototype.

toString method—via the prototype chain. The chris object, on the other
hand, defines its own method, shadowing the toString property on the
prototype chain. If we delete the custom toString property from the chris
object using the delete operator, the property no longer exists directly on the
specific object, causing the interpreter to look up the method from the prototype
chain, eventually finding Object.prototype.

When we turn our attention to property attributes, we will discuss some addi-
tional subtleties of the [[Put]] method.

7.1.3 Extending Objects through the Prototype Chain
By manipulating the prototype property of JavaScript constructors we can mod-
ify the behavior of every object created by it, including objects created before the
manipulation. This also holds for native objects, such as arrays. To see how this
works, we’re going to implement a simple sum method for arrays. The test in
Listing 7.4 illustrates what we want to achieve.

Listing 7.4 Describing the behavior of Array.prototype.sum

TestCase("ArraySumTest", {
"test should summarize numbers in array": function () {

var array = [1, 2, 3, 4, 5, 6];

assertEquals(21, array.sum());
}

});

Running this test informs us that there is no sum method for arrays, which is
not all that surprising. The implementation is a trivial summarizing loop, as seen in
Listing 7.5.

 From the Library of WoweBook.Com

ptg

122 Objects and Prototypal Inheritance

Listing 7.5 Adding a method to Array.prototype

Array.prototype.sum = function () {
var sum = 0;

for (var i = 0, l = this.length; i < l; i++) {
sum += this[i];

}

return sum;
};

Because all arrays inherit from Array.prototype, we’re able to add
methods to all arrays. But what happens if there already is a sum method for
arrays? Such a method could be provided by a given browser, a library or other
code running along with ours. If this is the case, we’re effectively overwriting that
other method. Listing 7.6 avoids this by placing our implementation inside an if

test that verifies that the method we’re adding does not already exist.

Listing 7.6 Defensively adding a method to Array.prototype

if (typeof Array.prototype.sum == "undefined") {
Array.prototype.sum = function () {
// ...

};
}

In general, this is a good idea when extending native objects or otherwise
working on global objects. This way we make sure our code doesn’t trip up other
code. Even so, if there already is a sum method available, it may not act the way we
expect, causing our code that relies on our sum to break. We can catch these errors
with a strong test suite, but this kind of problem clearly indicates that relying on
extensions to global objects may not be the best approach when the focus is writing
robust code.

7.1.4 Enumerable Properties
Extending native prototypes like we just did comes with a price. We already saw
how this may lead to conflicts, but there is another drawback to this approach.
When adding properties to an object, they are instantly enumerable on any instance
that inherits it. Listing 7.7 shows an example of looping arrays.

 From the Library of WoweBook.Com

ptg

7.1 Objects and Properties 123

Listing 7.7 Looping arrays with for and for-in

TestCase("ArrayLoopTest", {
"test looping should iterate over all items":
function () {

var array = [1, 2, 3, 4, 5, 6];
var result = [];

// Standard for-loop
for (var i = 0, l = array.length; i < l; i++) {
result.push(array[i]);

}

assertEquals("123456", result.join(""));
},

"test for-in loop should iterate over all items":
function () {

var array = [1, 2, 3, 4, 5, 6];
var result = [];

for (var i in array) {
result.push(array[i]);

}

assertEquals("123456", result.join(""));
}

});

These two loops both attempt to copy all the elements of one array onto another,
and then join both arrays into a string to verify that they do indeed contain the same
elements. Running this test reveals that the second test fails with the message in
Listing 7.8.

Listing 7.8 Result of running test in Listing 7.7

expected "123456" but was "123456function () { [... snip]"

To understand what’s happening, we need to understand the for-in enu-
meration. for (var property in object) will fetch the first enumerable
property of object. property is assigned the name of the property, and the
body of the loop is executed. This is repeated as long as object has more enu-
merable properties, and the body of the loop does not issue break (or return if
inside a function).

 From the Library of WoweBook.Com

ptg

124 Objects and Prototypal Inheritance

For an array object, the only enumerable properties are its numeric indexes.
The methods and the length property provided by Array.prototype are not
enumerable. This is why a for-in loop will only reveal the indexes and their
associated values for array objects. However, when we add properties to an object
or one of the objects in its prototype chain, they are enumerable by default. Because
of this fact, these new properties will also appear in a for-in loop, as shown by
the test failure above.

I recommend you don’t use for-in on arrays. The problem illustrated above
can be worked around, as we will see shortly, but not without trading off per-
formance. Using for-in on arrays effectively means we can’t normalize browser
behavior by adding missing methods to Array.prototype without inferring a
performance hit.

7.1.4.1 Object.prototype.hasOwnProperty

Object.prototype.hasOwnProperty(name) returns true if an object
has a property with the given name. If the object either inherits the property from
the prototype chain, or doesn’t have such a property at all, hasOwnProperty
returns false. This means that we can qualify a for-in loop with a call to
hasOwnProperty to ensure we only loop the object’s own properties, as seen in
Listing 7.9.

Listing 7.9 Qualifying a loop with hasOwnProperty

"test looping should only iterate over own properties":
function () {
var person = {
name: "Christian",
profession: "Programmer",
location: "Norway"

};

var result = [];

for (var prop in person) {
if (person.hasOwnProperty(prop)) {

result.push(prop);
}

}

var expected = ["location", "name", "profession"];
assertEquals(expected, result.sort());

}

 From the Library of WoweBook.Com

ptg

7.1 Objects and Properties 125

This test passes because we now filter out properties added to the proto-
type chain. There are two things to keep in mind when dealing with Object.

prototype.hasOwnProperty.

• Some browsers, such as early versions of Safari don’t support it.

• Objects are frequently used as hashes; there is a risk of hasOwnProperty
being shadowed by another property.

To guard our code against the latter case, we can implement a custom method
that accepts an object and a property and returns true if the property is one of
the object’s own properties, even when the object’s hasOwnProperty method is
shadowed or otherwise unavailable. Listing 7.10 shows the method. Add it to the
tdd.js file from Chapter 6, Applied Functions and Closures.

Listing 7.10 Sandboxed hasOwnProperty

tddjs.isOwnProperty = (function () {
var hasOwn = Object.prototype.hasOwnProperty;

if (typeof hasOwn == "function") {
return function (object, property) {
return hasOwn.call(object, property);

};
} else {

// Provide an emulation if you can live with possibly
// inaccurate results

}
}());

For browsers that do not support this method we can emulate it, but it is not
possible to provide a fully conforming implementation. Chances are that browsers
that lack this method will present other issues as well, so failing to provide an
emulation may not be your main problem. We will learn techniques to deal with
such cases in Chapter 10, Feature Detection.

Because properties are always enumerable when added by JavaScript, and
because globals make it hard for scripts to co-exist, it is widely accepted that
Object.prototype should be left alone. Array.prototype should also be
treated with care, especially if you are usingfor-in on arrays. Although such loops
should generally be avoided for arrays, they can be useful when dealing with large,
sparse arrays.

 From the Library of WoweBook.Com

ptg

126 Objects and Prototypal Inheritance

Keep in mind that although you may decide to avoid extending native objects,
others may not be so nice. Filtering for-in loops with hasOwnProperty—even
when you are not modifying Object.prototype and Array.prototype

yourself—will keep your code running as expected, regardless of whether third-
party code such as libraries, ad, or analytics related code decide to do so.

7.1.5 Property Attributes
ECMA-262 defines four properties that may be set for any given property. It
is important to note that these attributes are set for properties by the inter-
preter, but JavaScript code you write has no way of setting these attributes.
The ReadOnly and DontDelete attributes cannot be inspected explicitly, but
we can deduce their values. ECMA-262 specifies the Object.prototype.

propertyIsEnumerable method, which could be used to get the value of
DontEnum; however, it does not check the prototype chain and is not reliably
implemented across browsers.

7.1.5.1 ReadOnly

If a property has the ReadOnly attribute set, it is not possible to write to the pro-
perty. Attempting to do so will pass by silently, but the property attempted to update
will not change. Note that if any object on the prototype chain has a property with
the attribute set, writing to the property will fail. ReadOnly does not imply that the
value is constant and unchanging—the interpreter may change its value internally.

7.1.5.2 DontDelete

If a property has the DontDelete attribute set, it is not possible to delete it
using the delete operator. Much like writing to properties with the ReadOnly
attribute, deleting properties with the DontDelete attribute will fail silently. The
expression will return false if the object either didn’t have the given property, or if
the property existed and had a DontDelete attribute.

7.1.5.3 DontEnum

DontEnum causes properties to not appear in for-in loops, as shown in
Listing 7.9. The DontEnum attribute is the most important property attribute
to understand because it is the one that is most likely to affect your code. In
Listing 7.7 we saw an example of how enumerable properties may trip up badly
written for-in loops. The DontEnum attribute is the internal mechanism that
decides whether or not a property is enumerable.

 From the Library of WoweBook.Com

ptg

7.1 Objects and Properties 127

Internet Explorer (including version 8) has a peculiar bug concerning the
DontEnum attribute—any property on an object that has a property by the same
name anywhere on its prototype chain that has DontEnum will act as though it has
DontEnum as well (even though it should be impossible to have DontEnum on a
user-provided object). This means that if you create an object and shadow any of the
properties on Object.prototype, neither of these properties will show up in a
for-in loop in Internet Explorer. If you create an object of any of the native and
host types, all the properties on the respective prototype chains with DontEnum

will magically disappear from a for-in loop, as seen in Listing 7.11.

Listing 7.11 Overriding properties with DontEnum

TestCase("PropertyEnumerationTest", {
"test should enumerate shadowed object properties":
function () {

var object = {
// Properties with DontEnum on Object.prototype
toString: "toString",
toLocaleString: "toLocaleString",
valueOf: "valueOf",
hasOwnProperty: "hasOwnProperty",
isPrototypeOf: "isPrototypeOf",
propertyIsEnumerable: "propertyIsEnumerable",
constructor: "constructor"

};

var result = [];

for (var property in object) {
result.push(property);

}

assertEquals(7, result.length);
},

"test should enumerate shadowed function properties":
function () {

var object = function () {};

// Additional properties with DontEnum on
//Function.prototype
object.prototype = "prototype";
object.call = "call";
object.apply = "apply";

 From the Library of WoweBook.Com

ptg

128 Objects and Prototypal Inheritance

var result = [];

for (var property in object) {
result.push(property);

}

assertEquals(3, result.length);
}

});

Both of these tests fail in all versions of Internet Explorer, including IE8;
result.length is 0. We can solve this issue by making a special case for
the non-enumerable properties on Object.prototype as well as Function.
prototype if the object in question inherits from it.

The tddjs.eachmethod in Listing 7.12 can be used to loop properties of an
object, accounting for Internet Explorer’s bug. When defined, the method attempts
to loop the properties of an object that shadows all the non-enumerable proper-
ties on Object.prototype as well as a function that shadows non-enumerable
properties on Function.prototype. Any property that does not show up in
the loop is remembered and looped explicitly inside the each function.

Listing 7.12 Looping properties with a cross-browser each method

tddjs.each = (function () {
// Returns an array of properties that are not exposed
// in a for-in loop on the provided object
function unEnumerated(object, properties) {
var length = properties.length;

for (var i = 0; i < length; i++) {
object[properties[i]] = true;

}

var enumerated = length;

for (var prop in object) {
if (tddjs.isOwnProperty(object, prop)) {
enumerated -= 1;
object[prop] = false;

}
}

if (!enumerated) {
return;

 From the Library of WoweBook.Com

ptg

7.1 Objects and Properties 129

}

var needsFix = [];

for (i = 0; i < length; i++) {
if (object[properties[i]]) {
needsFix.push(properties[i]);

}
}

return needsFix;
}

var oFixes = unEnumerated({},
["toString", "toLocaleString", "valueOf",
"hasOwnProperty", "isPrototypeOf",
"constructor", "propertyIsEnumerable"]);

var fFixes = unEnumerated(
function () {}, ["call", "apply", "prototype"]);

if (fFixes && oFixes) {
fFixes = oFixes.concat(fFixes);

}

var needsFix = { "object": oFixes, "function": fFixes };

return function (object, callback) {
if (typeof callback != "function") {

throw new TypeError("callback is not a function");
}

// Normal loop, should expose all enumerable properties
// in conforming browsers
for (var prop in object) {

if (tddjs.isOwnProperty(object, prop)) {
callback(prop, object[prop]);

}
}

// Loop additional properties in non-conforming browsers
var fixes = needsFix[typeof object];

if (fixes) {
var property;

 From the Library of WoweBook.Com

ptg

130 Objects and Prototypal Inheritance

for (var i = 0, l = fixes.length; i < l; i++) {
property = fixes[i];

if (tddjs.isOwnProperty(object, property)) {
callback(property, object[property]);

}
}

}
};

}());

If we change the for-in loops in the tests in Listing 7.11 to use the new
tddjs.each method, the tests will run, even on Internet Explorer. Addition-
ally, the method smoothes over a similar bug in Chrome in which function objects
prototype property is not enumerable when shadowed.

7.2 Creating Objects with Constructors
JavaScript functions have the ability to act as constructors when invoked with the
new operator, i.e., new MyConstructor(). There is nothing that differentiates
the definition of a regular function and one that constructs objects. In fact, JavaScript
provides every function with a prototype object in case it is used with the new
operator. When the function is used as a constructor to create new objects, their
internal [[Prototype]] property will be a reference to this object.

In the absence of language level checks on functions vs. constructors, con-
structor names are usually capitalized to indicate their intended use. Regardless of
whether you use constructors or not in your own code, you should honor this idiom
by not capitalizing names of functions and objects that are not constructors.

7.2.1 prototype and [[Prototype]]
The word “prototype” is used to describe two concepts. First, a constructor has
a public prototype property. When the constructor is used to create new ob-
jects, those objects will have an internal [[Prototype]] property that is a refer-
ence to the constructor’s prototype property. Second, the constructor has an
internal [[Prototype]] that references the prototype of the constructor that cre-
ated it, most commonly Function.prototype. All JavaScript objects have
an internal [[Prototype]] property; only function objects have the prototype

property.

 From the Library of WoweBook.Com

ptg

7.2 Creating Objects with Constructors 131

7.2.2 Creating Objects with new
When a function is called with the new operator, a new JavaScript object is created.
The function is then called using the newly created object as the this value along
with any arguments that were passed in the original call.

In Listing 7.13 we see how creating objects with constructors compares with
the object literal we’ve been using so far.

Listing 7.13 Creating objects with constructors

function Circle(radius) {
this.radius = radius;

}

// Create a circle
var circ = new Circle(6);

// Create a circle-like object
var circ2 = { radius: 6 };

The two objects share the same properties—the radius property along with
properties inherited from Object.prototype. Although both objects inherit
from Object.prototype, circ2 does so directly (i.e., its [[Prototype]] prop-
erty is a reference to Object.prototype), whereas circ does so indirectly
through Circle.prototype. We can use the instanceof operator to deter-
mine the relationship between objects. Additionally, we can use the constructor
property to inspect their origin, as seen in Listing 7.14.

Listing 7.14 Inspecting objects

TestCase("CircleTest", {
"test inspect objects": function () {

var circ = new Circle(6);
var circ2 = { radius: 6 };

assertTrue(circ instanceof Object);
assertTrue(circ instanceof Circle);
assertTrue(circ2 instanceof Object);

assertEquals(Circle, circ.constructor);
assertEquals(Object, circ2.constructor);

}
});

 From the Library of WoweBook.Com

ptg

132 Objects and Prototypal Inheritance

The expression a instanceof b will return true whenever the internal
[[Prototype]] property of a, or one of the objects on its prototype chain, is the
same object as b.prototype.

7.2.3 Constructor Prototypes
Functions are always assigned a prototype property, which will be set as the in-
ternal [[Prototype]] property of objects created by the function when used as a con-
structor. The assigned prototype object’s prototype is in turnObject.prototype
and it defines a single property, constructor, which is a reference to the con-
structor itself. Because the new operator may be used with any expression that
results in a constructor, we can use this property to dynamically create new objects
of the same type as a known object. In Listing 7.15 we use the constructor
property of a circle object to create a new circle object.

Listing 7.15 Creating objects of the same kind

"test should create another object of same kind":
function () {
var circle = new Circle(6);
var circle2 = new circle.constructor(9);

assertEquals(circle.constructor, circle2.constructor);
assertTrue(circle2 instanceof Circle);

}

7.2.3.1 Adding Properties to the Prototype

We can give our new circle objects new functionality by augmenting the proto-
type property of the constructor, much like we extended the behavior of native
objects in Section 7.1.3, Extending Objects through the Prototype Chain. Listing 7.16
adds three methods for circle objects to inherit.

Listing 7.16 Adding properties to Circle.prototype

Circle.prototype.diameter = function () {
return this.radius * 2;

};

Circle.prototype.circumference = function () {
return this.diameter() * Math.PI;

};

 From the Library of WoweBook.Com

ptg

7.2 Creating Objects with Constructors 133

Circle.prototype.area = function () {
return this.radius * this.radius * Math.PI;

};

Listing 7.17 shows a simple test to verify that objects do indeed inherit the
methods.

Listing 7.17 Testing Circle.prototype.diameter

"test should inherit properties from Circle.prototype":
function () {
var circle = new Circle(6);

assertEquals(12, circle.diameter());
}

RepeatingCircle.prototypequickly becomes cumbersome and expensive
(in terms of bytes to go over the wire) when adding more than a few properties to
the prototype. We can improve this pattern in a number of ways. Listing 7.18 shows
the shortest way—simply provide an object literal as the new prototype.

Listing 7.18 Assigning Circle.prototype

Circle.prototype = {
diameter: function () {

return this.radius * 2;
},

circumference: function () {
return this.diameter() * Math.PI;

},

area: function () {
return this.radius * this.radius * Math.PI;

}
};

Unfortunately, this breaks some of our previous tests. In particular, the assertion
in Listing 7.19 no longer holds.

Listing 7.19 Failing assertion on constructor equality

assertEquals(Circle, circle.constructor)

 From the Library of WoweBook.Com

ptg

134 Objects and Prototypal Inheritance

When we assign a new object to Circle.prototype, JavaScript no longer
creates a constructor property for us. This means that the [[Get]] for con-
structor will go up the prototype chain until a value is found. In the case of our
constructor, the result is Object.prototype whose constructor property
is Object, as seen in Listing 7.20.

Listing 7.20 Broken constructor property

"test constructor is Object when prototype is overridden":
function () {
function Circle() {}
Circle.prototype = {};

assertEquals(Object, new Circle().constructor);
}

Listing 7.21 solves the problem by assigning the constructor property
manually.

Listing 7.21 Fixing the missing constructor property

Circle.prototype = {
constructor: Circle,

// ...
};

To avoid the problem entirely, we could also extend the given prototype prop-
erty in a closure to avoid repeating Circle.prototype for each property. This
approach is shown in Listing 7.22.

Listing 7.22 Avoiding the missing constructor problem

(function (p) {
p.diameter = function () {
return this.radius * 2;

};

p.circumference = function () {
return this.diameter() * Math.PI;

};

p.area = function () {
return this.radius * this.radius * Math.PI;

};
}(Circle.prototype));

 From the Library of WoweBook.Com

ptg

7.2 Creating Objects with Constructors 135

By not overwriting the prototype property, we are also avoiding its
constructor property being enumerable. The object provided for us has the
DontEnum attribute set, which is impossible to recreate when we assign a cus-
tom object to the prototype property and manually restore the constructor
property.

7.2.4 The Problem with Constructors
There is a potential problem with constructors. Because there is nothing that sep-
arates a constructor from a function, there is no guarantee that someone won’t use
your constructor as a function. Listing 7.23 shows how a missing new keyword can
have grave effects.

Listing 7.23 Constructor misuse

"test calling prototype without 'new' returns undefined":
function () {
var circle = Circle(6);

assertEquals("undefined", typeof circle);
// Oops! Defined property on global object
assertEquals(6, radius);

}

This example shows two rather severe consequences of calling the constructor
as a function. Because the constructor does not have a return statement, the type of
the circle ends up being undefined. Even worse, because we did not call the
function with the new operator, JavaScript did not create a new object and set it as
the function’s this value for us. Thus, the function executes on the global object,
causingthis.radius = radius to set aradiusproperty on the global object,
as shown by the second assertion in Listing 7.23.

In Listing 7.24 the problem is mitigated by use of the instanceof operator.

Listing 7.24 Detecting constructor misuse

function Circle(radius) {
if (!(this instanceof Circle)) {

return new Circle(radius);
}

this.radius = radius;
}

 From the Library of WoweBook.Com

ptg

136 Objects and Prototypal Inheritance

Whenever someone forgets the new operator when calling the constructor,
this will refer to the global object rather than a newly created object. By using
the instanceof operator, we’re able to catch this, and can explicitly call the
constructor over again with the same arguments and return the new object.

ECMA-262 defines the behavior for all the native constructors when used as
functions. The result of calling a constructor as a function often has the same effect
as our implementation above—a new object is created as if the function was actually
called with the new operator.

Assuming that calling a constructor without new is usually a typo, you may
want to discourage using constructors as functions. Throwing an error rather than
sweeping the error under the rug will probably ensure a more consistent code base
in the long run.

7.3 Pseudo-classical Inheritance
Equipped with our understanding of constructors and their prototype properties,
we can now create arbitrary hierarchies of objects, in much the same way one
would create class hierarchies in a classical language. We will do this with Sphere,
a constructor whose prototype property inherits from Circle.prototype

rather than Object.prototype.
We need Sphere.prototype to refer to an object whose internal [[Pro-

totype]] is Circle.prototype. In other words, we need a circle object to set
up this link. Unfortunately, this process is not straightforward; In order to create a
circle object we need to invoke the Circle constructor. However, the constructor
may provide our prototype object with unwanted state, and it may even fail in the
absence of input arguments. To circumvent this potential problem, Listing 7.25 uses
an intermediate constructor that borrows Circle.prototype.

Listing 7.25 Deeper inheritance

function Sphere(radius) {
this.radius = radius;

}

Sphere.prototype = (function () {
function F() {};
F.prototype = Circle.prototype;

return new F();
}());

 From the Library of WoweBook.Com

ptg

7.3 Pseudo-classical Inheritance 137

// Don't forget the constructor - else it will resolve as
// Circle through the prototype chain
Sphere.prototype.constructor = Sphere;

Now we can create spheres that inherit from circles, as shown by the test in
Listing 7.26.

Listing 7.26 Testing the new Sphere constructor

"test spheres are circles in 3D": function () {
var radius = 6;
var sphere = new Sphere(radius);

assertTrue(sphere instanceof Sphere);
assertTrue(sphere instanceof Circle);
assertTrue(sphere instanceof Object);
assertEquals(12, sphere.diameter());

}

7.3.1 The Inherit Function
In Listing 7.25 we extended the Sphere constructor with the Circle construc-
tor by linking their prototypes together, causing sphere objects to inherit from
Circle.prototype. The solution is fairly obscure, especially when compared
with inheritance in other languages. Unfortunately, JavaScript does not offer any
abstractions over this concept, but we are free to implement our own. Listing 7.27
shows a test for what such an abstraction might look like.

Listing 7.27 Specification for inherit

TestCase("FunctionInheritTest", {
"test should link prototypes": function () {

var SubFn = function () {};
var SuperFn = function () {};
SubFn.inherit(SuperFn);

assertTrue(new SubFn() instanceof SuperFn);
}

});

We already implemented this feature in Listing 7.25, so we only need to move
it into a separate function. Listing 7.28 shows the extracted function.

 From the Library of WoweBook.Com

ptg

138 Objects and Prototypal Inheritance

Listing 7.28 Implementing inherit

if (!Function.prototype.inherit) {
(function () {
function F() {}

Function.prototype.inherit = function (superFn) {
F.prototype = superFn.prototype;
this.prototype = new F();
this.prototype.constructor = this;

};
}());

}

This implementation uses the same intermediate constructor for all calls, only
assigning the prototype for each call. Using this new function we can clean up our
circles and spheres, as seen in Listing 7.29.

Listing 7.29 Making Sphere inherit from Circle with inherit

function Sphere (radius) {
this.radius = radius;

}

Sphere.inherit(Circle);

More or less all the major JavaScript libraries ship with a variant of theinherit
function, usually under the name extend. I’ve named it inherit in order to avoid
confusion when we turn our attention to another extend method later in this
chapter.

7.3.2 Accessing [[Prototype]]
The inherit function we just wrote makes it possible to easily create object hierarchies
using constructors. Still, comparing the Circle and Sphere constructors tells
us something isn’t quite right—they both perform the same initialization of the
radius property. The inheritance we’ve set up exists on the object level through
the prototype chain, the constructors are not linked in the same way a class and a
subclass are linked in a classical language. In particular, JavaScript has no super
to directly refer to properties on objects from which an object inherits. In fact,
ECMA-262 3rd edition provides no way at all to access the internal [[Prototype]]
property of an object.

Even though there is no standardized way of accessing the [[Prototype]] of
an object, some implementations provide a non-standard __proto__ property

 From the Library of WoweBook.Com

ptg

7.3 Pseudo-classical Inheritance 139

that exposes the internal [[Prototype]] property. ECMAScript 5 (ES5) has
standardized this feature as the new method Object.getPrototypeOf

(object), giving you the ability to look up an object’s [[Prototype]]. In browsers
in which __proto__ is not available, we can sometimes use the constructor
property to get the [[Prototype]], but it requires that the object was in fact created
using a constructor and that the constructor property is set correctly.

7.3.3 Implementing super
So, JavaScript has no super, and it is not possible to traverse the prototype chain
in a standardized manner that is guaranteed to work reliably cross-browser. It’s still
possible to emulate the concept of super in JavaScript. Listing 7.30 achieves this
by calling the Circle constructor from within the Sphere constructor, passing
the newly created object as the this value.

Listing 7.30 Accessing the Circle constructor from within the Sphere
constructor

function Sphere(radius) {
Circle.call(this, radius);

}

Sphere.inherit(Circle);

Running the tests confirms that sphere objects still work as intended. We can
employ the same technique to access “super methods” from other methods as well.
In Listing 7.31 we call the area method on the prototype.

Listing 7.31 Calling a method on the prototype chain

Sphere.prototype.area = function () {
return 4 * Circle.prototype.area.call(this);

};

Listing 7.32 shows a simple test of the new method.

Listing 7.32 Calculating surface area

"test should calculate sphere area": function () {
var sphere = new Sphere(3);

assertEquals(113, Math.round(sphere.area()));
}

 From the Library of WoweBook.Com

ptg

140 Objects and Prototypal Inheritance

The drawback of this solution is its verbosity; The call to Circle.

prototype.area is long and couples Sphere very tightly to Circle. To miti-
gate this, Listing 7.33 makes the inherit function set up a “super” link for us.

Listing 7.33 Expecting the _super link to refer to the prototype

"test should set up link to super": function () {
var SubFn = function () {};
var SuperFn = function () {};
SubFn.inherit(SuperFn);

assertEquals(SuperFn.prototype, SubFn.prototype._super);
}

Note the leading underscore. ECMA-262 defines super as a reserved word
intended for future use, so we best not use it. The implementation in Listing 7.34
is still straightforward.

Listing 7.34 Implementing a link to the prototype

if (!Function.prototype.inherit) {
(function () {
function F() {}

Function.prototype.inherit = function (superFn) {
F.prototype = superFn.prototype;
this.prototype = new F();
this.prototype.constructor = this;
this.prototype._super = superFn.prototype;

};
}());

}

Using this new property, Listing 7.35 simplifies Sphere.prototype.area.

Listing 7.35 Calling a method on the prototype chain

Sphere.prototype.area = function () {
return 4 * this._super.area.call(this);

};

7.3.3.1 The _super Method

Although I would definitely not recommend it, someone serious about emulating
classical inheritance in JavaScript would probably prefer _super to be a method

 From the Library of WoweBook.Com

ptg

7.3 Pseudo-classical Inheritance 141

rather than a simple link to the prototype. Calling the method should magically
call the corresponding method on the prototype chain. The concept is illustrated in
Listing 7.36.

Listing 7.36 Testing the _super method

"test super should call method of same name on protoype":
function () {
function Person(name) {

this.name = name;
}

Person.prototype = {
constructor: Person,

getName: function () {
return this.name;

},

speak: function () {
return "Hello";

}
};

function LoudPerson(name) {
Person.call(this, name);

}

LoudPerson.inherit2(Person, {
getName: function () {
return this._super().toUpperCase();

},

speak: function () {
return this._super() + "!!!";

}
});

var np = new LoudPerson("Chris");

assertEquals("CHRIS", np.getName());
assertEquals("Hello!!!", np.speak());

}

In this example we are using Function.prototype.inherit2 to estab-
lish the prototype chain for theLoudPerson objects. It accepts a second argument,

 From the Library of WoweBook.Com

ptg

142 Objects and Prototypal Inheritance

which is an object that defines the methods on LoudPerson.prototype that
need to call _super. Listing 7.37 shows one possible implementation.

Listing 7.37 Implementing _super as a method

if (!Function.prototype.inherit2) {
(function () {

function F() {}

Function.prototype.inherit2 = function (superFn, methods) {
F.prototype = superFn.prototype;
this.prototype = new F();
this.prototype.constructor = this;

var subProto = this.prototype;

tddjs.each(methods, function (name, method) {
// Wrap the original method
subProto[name] = function () {

var returnValue;
var oldSuper = this._super;
this._super = superFn.prototype[name];

try {
returnValue = method.apply(this, arguments);

} finally {
this._super = oldSuper;

}

return returnValue;
};

});
};

}());
}

This implementation allows for calls to this._super() as if the method had
special meaning. In reality, we’re wrapping the original methods in a new function
that takes care of setting this._super to the right method before calling the
original method.

Using the new inherit function we could now implement Sphere as seen in
Listing 7.38.

 From the Library of WoweBook.Com

ptg

7.3 Pseudo-classical Inheritance 143

Listing 7.38 Implementing Sphere with inherit2

function Sphere(radius) {
Circle.call(this, radius);

}

Sphere.inherit2(Circle, {
area: function () {

return 4 * this._super();
}

});

7.3.3.2 Performance of the super Method

Using the inherit2 method we can create constructors and objects that
come pretty close to emulating classical inheritance. It does not, however, per-
form particularly well. By redefining all the methods and wrapping them in
closures, inherit2 will not only be slower than inherit when extend-
ing constructors, but calling this._super() will be slower than calling
this._super.method.call(this) as well.

Further hits to performance are gained by the try-catch, which is used to ensure
that this._super is restored after the method has executed. As if that wasn’t
enough, the method approach only allows static inheritance. Adding new methods
to Circle.prototype will not automatically expose _super in same named
methods on Sphere.prototype. To get that working we would have to imple-
ment some kind of helper function to add methods that would add the enclosing
function that sets up _super. In any case, the result would be less than elegant and
would introduce a possibly significant performance overhead.

I hope you never use this function; JavaScript has better patterns in store. If
anything, I think the _super implementation is a testament to JavaScript’s flexi-
bility. JavaScript doesn’t have classes, but it gives you the tools you need to build
them, should you need to do so.

7.3.3.3 A _super Helper Function

A somewhat saner implementation, although not as concise, can be achieved by
implementing _super as a helper function piggybacking the prototype link, as
seen in Listing 7.39.

 From the Library of WoweBook.Com

ptg

144 Objects and Prototypal Inheritance

Listing 7.39 A simpler _super implementation

function _super(object, methodName) {
var method = object._super && object._super[methodName];

if (typeof method != "function") {
return;

}

// Remove the first two arguments (object and method)
var args = Array.prototype.slice.call(arguments, 2);

// Pass the rest of the arguments along to the super
return method.apply(object, args);

}

Listing 7.40 shows an example of using the _super function.

Listing 7.40 Using the simpler _super helper

function LoudPerson(name) {
_super(this, "constructor", name);

}

LoudPerson.inherit(Person);

LoudPerson.prototype.getName = function () {
return _super(this, "getName").toUpperCase();

};

LoudPerson.prototype.say = function (words) {
return _super(this, "speak", words) + "!!!";

};

var np = new LoudPerson("Chris");

assertEquals("CHRIS", np.getName());
assertEquals("Hello!!!", np.say("Hello"));

This is unlikely to be faster to call than spelling out the method to call directly,
but at least it defeats the worst performance issue brought on by implementing
_super as a method. In general, we can implement sophisticated object oriented
solutions without the use of the _super crutch, as we will see both throughout this
chapter and the sample projects in Part III, Real-World Test-Driven Development in
JavaScript.

 From the Library of WoweBook.Com

ptg

7.4 Encapsulation and Information Hiding 145

7.4 Encapsulation and Information Hiding
JavaScript does not have access modifiers such as public, protected, and
private. Additionally, the property attributes DontDelete and ReadOnly

are unavailable to us. As a consequence, the objects we’ve created so far consist
solely of public properties. In addition to being public, the objects and properties
are also mutable in any context because we are unable to freeze them. This means
our object’s internals are open and available for modification by anyone, possibly
compromising the security and integrity of our objects.

When using constructors and their prototypes, it is common to pre-
fix properties with an underscore if they are intended to be private, i.e.,
this._privateProperty. Granted, this does not protect the properties in
any way, but it may help users of your code understand which properties to stay
away from. We can improve the situation by turning to closures, which are capable
of producing a scope for which there is no public access.

7.4.1 Private Methods
By using closures, we can create private methods. Actually, they’re more like pri-
vate functions, as attaching them to an object effectively makes them public. These
functions will be available to other functions defined in the same scope, but they
will not be available to methods added to the object or its prototype at a later stage.
Listing 7.41 shows an example.

Listing 7.41 Defining a private function

function Circle(radius) {
this.radius = radius;

}

(function (circleProto) {
// Functions declared in this scope are private, and only
// available to other functions declared in the same scope
function ensureValidRadius(radius) {

return radius >= 0;
}

function getRadius() {
return this.radius;

}

function setRadius(radius) {
if (ensureValidRadius(radius)) {

 From the Library of WoweBook.Com

ptg

146 Objects and Prototypal Inheritance

this.radius = radius;
}

}

// Assigning the functions to properties of the prototype
// makes them public methods
circleProto.getRadius = getRadius;
circleProto.setRadius = setRadius;

}(Circle.prototype));

In Listing 7.41 we create an anonymous closure that is immediately executed
with Circle.prototype as the only argument. Inside we add two public meth-
ods, and keep a reference to one private function, ensureValidRadius.

If we need a private function to operate on the object, we can either design it to
accept a circle object as first argument, or invoke it withprivFunc.call(this,
/* args... */), thus being able to refer to the circle as this inside the
function.

We could also have used the existing constructor as the enclosing scope to hold
the private function. In that case we need to also define the public methods inside
it, so they share scope with the private function, as seen in Listing 7.42.

Listing 7.42 Using a private function inside the constructor

function Circle(radius) {
this.radius = radius;

function ensureValidRadius(radius) {
return radius >= 0;

}

function getRadius() {
return this.radius;

}

function setRadius(radius) {
if (ensureValidRadius(radius)) {

this.radius = radius;
}

}

// Expose public methods
this.getRadius = getRadius;
this.setRadius = setRadius;

}

 From the Library of WoweBook.Com

ptg

7.4 Encapsulation and Information Hiding 147

This approach has a serious drawback in that it creates three function objects
for every person object created. The original approach using a closure when adding
properties to the prototype will only ever create three function objects that are
shared between all circle objects. This means that creating n circle objects will cause
the latter version to use approximately n times as much memory as the original
suggestion. Additionally, object creation will be significantly slower because the
constructor has to create the function objects as well. On the other hand, property
resolution is quicker in the latter case because the properties are found directly on
the object and no access to the prototype chain is needed.

In deep inheritance structures, looking up methods through the prototype chain
can impact method call performance. However, in most cases inheritance structures
are shallow, in which case object creation and memory consumption should be
prioritized.

The latter approach also breaks our current inheritance implementation. When
the Sphere constructor invokes the Circle constructor, it copies over the circle
methods to the newly created sphere object, effectively shadowing the methods on
Sphere.prototype. This means that the Sphere constructor needs to change
as well if this is our preferred style.

7.4.2 Private Members and Privileged Methods
In the same way private functions may be created inside the constructor, we can
create private members here, allowing us to protect the state of our objects. In
order to make anything useful with this we’ll need some public methods that can
access the private properties. Methods created in the same scope—meaning the
constructor—will have access to the private members, and are usually referred to
as “privileged methods.” Continuing our example, Listing 7.43 makes radius a
private member of Circle objects.

Listing 7.43 Using private members and privileged methods

function Circle(radius) {
function getSetRadius() {

if (arguments.length > 0) {
if (arguments[0] < 0) {

throw new TypeError("Radius should be >= 0");
}

radius = arguments[0];
}

 From the Library of WoweBook.Com

ptg

148 Objects and Prototypal Inheritance

return radius;
}

function diameter() {
return radius * 2;

}

function circumference() {
return diameter() * Math.PI;

}

// Expose privileged methods
this.radius = getSetRadius;
this.diameter = diameter;
this.circumference = circumference;

this.radius(radius);
}

The new object no longer has a numeric radius property. Instead, it stores its
state in a local variable. This means that none of the nested functions needs this
anymore, so we can simplify the calls to them. Objects created with this constructor
will be robust, because outside code cannot tamper with its internal state except
through the public API.

7.4.3 Functional Inheritance
In his book, JavaScript: The Good Parts [5], and on his website, Douglas Crockford
promotes what he calls functional inheritance. Functional inheritance is the next
logical step from Listing 7.43, in which we’ve already eliminated most uses of the
this keyword. In functional inheritance, the use of this is eliminated completely
and the constructor is no longer needed. Instead, the constructor becomes a reg-
ular function that creates an object and returns it. The methods are defined as
nested functions, which can access the free variables containing the object’s state.
Listing 7.44 shows an example.

Listing 7.44 Implementing circle using functional inheritance

function circle(radius) {
// Function definitions as before

return {
radius: getSetRadius,

 From the Library of WoweBook.Com

ptg

7.4 Encapsulation and Information Hiding 149

diameter: diameter,
area: area,
circumference: circumference

};
}

Because circle is no longer a constructor, its name is no longer capitalized.
To use this new function we omit the new keyword as seen in Listing 7.45.

Listing 7.45 Using the functional inheritance pattern

"test should create circle object with function":
function () {

var circ = circle(6);
assertEquals(6, circ.radius());

circ.radius(12);
assertEquals(12, circ.radius());
assertEquals(24, circ.diameter());

}

Crockford calls an object like the ones created bycircle durable [6]. When an
object is durable, its state is properly encapsulated, and it cannot be compromised by
outside tampering. This is achieved by keeping state in free variables inside closures,
and by never referring to the object’s public interface from inside the object. Recall
how we defined all the functions as inner private functions first, and then assigned
them to properties? By always referring to the object’s capability in terms of these
inner functions, offending code cannot compromise our object by, e.g., injecting its
own methods in place of our public methods.

7.4.3.1 Extending Objects

How can we achieve inheritance using this model? Rather than returning a new
object with the public properties, we create the object we want to extend, add
methods to it, and return it. You might recognize this design as the decorator pat-
tern, and it is. The object we want to extend can be created in any way—through
a constructor, from another object producing function, or even from the argu-
ments provided to the function. Listing 7.46 shows an example using spheres and
circles.

 From the Library of WoweBook.Com

ptg

150 Objects and Prototypal Inheritance

Listing 7.46 Implementing sphere using functional inheritance

function sphere(radius) {
var sphereObj = circle(radius);
var circleArea = sphereObj.area;

function area() {
return 4 * circleArea.call(this);

}

sphereObj.area = area;

return sphereObj;
}

The inheriting function may of course provide private variables and functions
of its own. It cannot, however, access the private variables and functions of the
object it builds upon.

The functional style is an interesting alternative to the pseudo-classical con-
structors, but comes with its own limitations. The two most obvious drawbacks
of this style of coding are that every object keeps its own copy of every function,
increasing memory usage, and that in practice we aren’t using the prototype chain,
which means more cruft when we want to call the “super” function or something
similar.

7.5 Object Composition and Mixins
In classical languages, class inheritance is the primary mechanism for sharing behav-
ior and reusing code. It also serves the purpose of defining types, which is important
in strongly typed languages. JavaScript is not strongly typed, and such classification is
not really interesting. Even though we have the previously discussed construc-

tor property and the instanceof operator, we’re far more often concerned
with what a given object can do. If it knows how to do the things we are interested
in, we are happy. Which constructor created the object to begin with is of less
interest.

JavaScript’s dynamic object type allows for many alternatives to type inheritance
in order to solve the case of shared behavior and code reuse. In this section we’ll
discuss how we can make new objects from old ones and how we can use mixins to
share behavior.

 From the Library of WoweBook.Com

ptg

7.5 Object Composition and Mixins 151

7.5.1 The Object.create Method
In Section 7.3, Pseudo-classical Inheritance, we took a dive into JavaScript construc-
tors and saw how they allow for a pseudo-classical inheritance model. Unfortunately,
going too far down that road leads to complex solutions that suffer on the perfor-
mance side, as evidenced by our rough implementation of super. In this section,
as in the previous on functional inheritance, we’ll focus solely on objects, bypassing
the constructors all together.

Returning to our previous example on circles and spheres, we used constructors
along with the inherit function to create a sphere object that inherited proper-
ties from Circle.prototype. The Object.create function takes an object
argument and returns a new object that inherits from it. No constructors involved,
only objects inheriting from other objects. Listing 7.47 describes the behavior with
a test.

Listing 7.47 Inheriting directly from objects

TestCase("ObjectCreateTest", {
"test sphere should inherit from circle":
function () {

var circle = {
radius: 6,

area: function () {
return this.radius * this.radius * Math.PI;

}
};

var sphere = Object.create(circle);

sphere.area = function () {
return 4 * circle.area.call(this);

};

assertEquals(452, Math.round(sphere.area()));
}

});

Here we expect the circle and sphere objects to behave as before, only
we use different means of creating them. We start out with a specific circle object.
Then we use Object.create to create a new object whose [[Prototype]] refers
to the old object, and we use this object as the sphere. The sphere object is then
modified to fit the behavior from the constructor example. Should we want new

 From the Library of WoweBook.Com

ptg

152 Objects and Prototypal Inheritance

spheres, we could simply create more objects like the one we already have, as seen in
Listing 7.48.

Listing 7.48 Creating more sphere objects

"test should create more spheres based on existing":
function () {
var circle = new Circle(6);
var sphere = Object.create(circle);

sphere.area = function () {
return 4 * circle.area.call(this);

};

var sphere2 = Object.create(sphere);
sphere2.radius = 10;

assertEquals(1257, Math.round(sphere2.area()));
}

The Object.create function in Listing 7.49 is simpler than the previous
Function.prototype.inherit method because it only needs to create a
single object whose prototype is linked to the object argument.

Listing 7.49 Implementing Object.create

if (!Object.create) {
(function () {
function F() {}

Object.create = function (object) {
F.prototype = object;
return new F();

};
}());

}

We create an intermediate constructor like before and assign the object argu-
ment to its prototype property. Finally we create a new object from the intermediate
constructor and return it. The new object will have an internal [[Prototype]] prop-
erty that references the original object, making it inherit directly from the object
argument. We could also update our Function.prototype.inherit func-
tion to use this method.

ES5 codifies the Object.create function, which “creates a new object with
a specified prototype”. Our implementation does not conform, because it does not

 From the Library of WoweBook.Com

ptg

7.5 Object Composition and Mixins 153

accept an optional properties argument. We will discuss this method further in
Chapter 8, ECMAScript 5th Edition.

7.5.2 The tddjs.extend Method
Often we want to borrow behavior from one or more other objects to build the
functionality we’re after. We’ve seen this a couple of times already. Remember the
arguments object? It acts roughly like an array, but it is not a true array, and
as such, lacks certain properties we might be interested in. The arguments ob-
ject does, however, possess the most important aspects of an array: the length
property, and numerical indexes as property names. These two aspects are enough
for most methods on Array.prototype to consider arguments an object
that “walks like a duck, swims like a duck, and quacks like a duck” and there-
fore is a duck (or rather, an array). This means that we can borrow methods from
Array.prototype by calling them with arguments as this, as seen in
Listing 7.50.

Listing 7.50 Borrowing from Array.prototype

"test arguments should borrow from Array.prototype":
function () {
function addToArray() {

var args = Array.prototype.slice.call(arguments);
var arr = args.shift();

return arr.concat(args);
}

var result = addToArray([], 1, 2, 3);

assertEquals([1, 2, 3], result);
}

The example borrows the slice function and calls it on the arguments

object. Because we don’t give it any other arguments, it will return the whole array,
but the trick is now we’ve effectively converted arguments to an array, on which
we can call the usual array methods.

Remember in Chapter 5, Functions, we illustrated implicit binding of this
by copying a function from one object to another. Doing so causes both objects
to share the same function object, so it’s a memory efficient way to share behavior.
Listing 7.51 shows an example.

 From the Library of WoweBook.Com

ptg

154 Objects and Prototypal Inheritance

Listing 7.51 Borrowing explicitly

"test arguments should borrow explicitly from Array.prototype":
function () {
function addToArray() {

arguments.slice = Array.prototype.slice;
var args = arguments.slice();
var arr = args.shift();

return arr.concat(args);
}

var result = addToArray([], 1, 2, 3);

assertEquals([1, 2, 3], result);
}

Using this technique, we can build objects that are collections of methods related
over some topic, and then add all the properties of this object onto another object
to “bless” it with the behavior. Listing 7.52 shows the initial test case for a method
that will help us do exactly that.

Listing 7.52 Initial test case for tddjs.extend

TestCase("ObjectExtendTest", {
setUp: function () {
this.dummy = {

setName: function (name) {
return (this.name = name);

},

getName: function () {
return this.name || null;

}
};

},

"test should copy properties": function () {
var object = {};
tddjs.extend(object, this.dummy);

assertEquals("function", typeof object.getName);
assertEquals("function", typeof object.setName);

}
});

 From the Library of WoweBook.Com

ptg

7.5 Object Composition and Mixins 155

The test sets up a dummy object in the setUp method. It then asserts that
when extending an object, all the properties from the source object is copied over.
This method is definitely eligible for the Internet Explorer DontEnum bug, so
Listing 7.53 uses the tddjs.each method to loop the properties.

Listing 7.53 Initial implementation of tddjs.extend

tddjs.extend = (function () {
function extend(target, source) {

tddjs.each(source, function (prop, val) {
target[prop] = val;

});
}

return extend;
}());

The next step, seen in Listing 7.54, is to ensure that the two arguments are safe
to use. Any object will do on both sides; we simply need to make sure they’re not
null or undefined.

Listing 7.54 Extending null

"test should return new object when source is null":
function () {
var object = tddjs.extend(null, this.dummy);

assertEquals("function", typeof object.getName);
assertEquals("function", typeof object.setName);

}

Note the expected return value. Listing 7.55 shows the implementation.

Listing 7.55 Allowing target to be null

function extend(target, source) {
target = target || {};

tddjs.each(source, function (prop, val) {
target[prop] = val;

});

return target;
}

 From the Library of WoweBook.Com

ptg

156 Objects and Prototypal Inheritance

If the source is not passed in, we can simply return the target untouched, as
seen in Listing 7.56.

Listing 7.56 Dealing with only one argument

"test should return target untouched when no source":
function () {
var object = tddjs.extend({});
var properties = [];

for (var prop in object) {
if (tddjs.isOwnProperty(object, prop)) {

properties.push(prop);
}

}

assertEquals(0, properties.length);
}

Now something interesting happens. This test passes in most browsers, even
when source is undefined. This is because of browsers’ forgiving nature, but
it is violating ECMAScript 3, which states that a TypeError should be thrown
when a for-in loop is trying to loop null or undefined. Interestingly, Internet
Explorer 6 is one of the browsers that does behave as expected here. ECMAScript
5 changes this behavior to not throw when the object being looped is null or
undefined. Listing 7.57 shows the required fix.

Listing 7.57 Aborting if there is no source

function extend(target, source) {
target = target || {};

if (!source) {
return target;

}

/* ... */
}

Note that tddjs.extend always overwrites if target already defines a
given property. We could embellish this method in several ways—adding a boolean
option to allow/prevent overwrite, adding an option to allow/prevent shadowing
of properties on the prototype chain, and so on. Your imagination is your limit.

 From the Library of WoweBook.Com

ptg

7.5 Object Composition and Mixins 157

7.5.3 Mixins
An object that defines a set of properties that can be used with the tddjs.extend
method to “bless” other objects is often called a mixin. For instance, the Ruby
standard library defines a bunch of useful methods in its Enumerable module,
which may be mixed in to any object that supports theeachmethod. Mixins provide
an incredibly powerful mechanism for sharing behavior between objects. We could
easily port the enumerable module from Ruby to a JavaScript object and mix it in
with, e.g., Array.protoype to give all arrays additional behavior (remember to
not loop arrays with for-in). Listing 7.58 shows an example that assumes that the
enumerable object contains at least a reject method.

Listing 7.58 Mixing in the enumerable object to Array.prototype

TestCase("EnumerableTest", {
"test should add enumerable methods to arrays":
function () {

tddjs.extend(Array.prototype, enumerable);

var even = [1, 2, 3, 4].reject(function (i) {
return i % 2 == 1;

});

assertEquals([2, 4], even);
}

});

Assuming we are in a browser that supports Array.prototype.forEach,
we could implement the reject method as seen in Listing 7.59.

Listing 7.59 Excerpt of JavaScript implementation of Ruby’s enumerable

var enumerable = {
/* ... */

reject: function (callback) {
var result = [];

this.forEach(function (item) {
if (!callback(item)) {

result.push(item);
}

});

 From the Library of WoweBook.Com

ptg

158 Objects and Prototypal Inheritance

return result;
}

};

7.6 Summary
In this chapter we’ve seen several approaches to JavaScript object creation, and
sharing of behavior between them. We started by gaining a thorough understanding
of how JavaScript properties and the prototype chain work. We then moved on
to constructors and used them in conjunction with their prototype property
to implement an emulation of classical inheritance. Pseudo-classical inheritance
can be tempting for developers unfamiliar with prototypes and JavaScript’s native
inheritance mechanism, but can lead to complex solutions that are computationally
inefficient.

Dispensing the constructors, we moved on to prototype-based inheritance and
explored how JavaScript allows us to work solely on objects by extending ob-
jects with other objects. By implementing a simple Object.create function, we
avoided some of the confusion introduced by constructors and were able to see
clearer how the prototype chain helps us extend the behavior of our objects.

Functional inheritance showed us how closures can be used to store state and
achieve truly private members and methods.

To wrap it all up, we looked at object composition and mixins in JavaScript,
combining all of the previously discussed patterns. Mixins are a great match for
JavaScript, and often offer a great way to share behavior between objects.

Which technique to use? The answer will vary depending on whom you ask.
There is no one right answer, because it depends on your situation. As we’ve seen,
there are trade-offs when choosing between a pseudo-classical approach and a func-
tional approach that will be affected by whether object creation, method invocation,
memory usage, or security is the most crucial aspect of your application. Through-
out this book we’ll see how to use a few of the techniques presented in this chapter
in real life examples.

 From the Library of WoweBook.Com

ptg

8ECMAScript 5th Edition

In December 2009, ECMA-262 5th Edition, commonly referred to as
ECMAScript 5, or simply ES5, was finalized and published by ECMA International.
This marked the first significant update to the core JavaScript language in 10 years.
ECMAScript 5 is the successor to ECMAScript 3, and is a mostly backwards com-
patible update of the language that codifies innovation by browser vendors over the
past decade and introduces a few new features.

ECMAScript 4 was never realized, and is part of the answer to why the language
could go without standardized updates for 10 years. This draft was widely considered
too revolutionary an update, and introduced several features that would not work
well with existing browsers. To this day, Adobe’s ActionScript (used in Flash) and
Microsoft’s JScript.Net are the only runtimes to implement a significant amount of
the proposed updates from ES4.

In this chapter we will take a cursory look at the most interesting changes in
ES5, and have a look at some of the programming patterns the new specification
enables. Particularly interesting are new additions to objects and properties, and
these will be afforded the bulk of our attention. Note that this chapter does not
cover all changes and additions in ECMAScript 5.

8.1 The Close Future of JavaScript
Backwards compatibility has been a major concern of ES5. JavaScript is
ubiquitous—every web browser released since the mid to late nineties supports

159

 From the Library of WoweBook.Com

ptg

160 ECMAScript 5th Edition

it in some form or other; it’s on phones and other mobile devices; it’s used to de-
velop extensions for browsers such as Mozilla Firefox and Google Chrome and has
even taken the front seat in Gnome Shell, the defining technology in the Gnome 3
desktop environment for Linux. JavaScript runtimes are wild beasts. When deploy-
ing a script on the web, we can never know what kind of runtime will attempt to
run our code. Couple this with the huge amount of JavaScript already deployed on
the web, and you will have no problem imagining why backwards compatibility has
been a key concern for ES5. The goal is not to “break the web,” but rather bring it
forward.

ES5 has worked hard to standardize, or codify, existing de facto standards—
innovation in the wild adopted across browser vendors as well as common use
cases found in modern JavaScript libraries. String.prototype.trim and
Function.prototype.bind are good examples of the latter, whereas attribute
getters and setters are good examples of the former.

Additionally, ES5 introduces strict mode, which points out the way moving
forward. Strict mode can be enabled with a simple string literal, and makes ES5
compliant implementations, well, stricter in their parsing and execution of scripts.
Strict mode sheds some of JavaScript’s bad parts and is intended to serve as the
starting point for future updates to the language.

The reason this section is entitled the close future of JavaScript is that there
is reason to believe that we won’t have to wait another 10 years for good browser
support. This is of course speculation on my (and others) part, but as ES5 cod-
ifies some de facto standards, some of these features are already available in
a good selection of browsers today. Additionally, the last couple of years have
seen a somewhat revitalized “browser war,” in which vendors compete harder
than in a long time in creating modern standards compliant and performant
browsers.

Microsoft and their Internet Explorer browser have slowed down web devel-
opers for many years, but recent development seems to suggest that they’re at least
back in the game trying to stay current. Besides, browser usage looks vastly different
today compared with only 5 years ago, and fair competition regulations are already
forcing Windows users in Europe to make a conscious choice of browser.

All in all, I am fairly positive to the adoption of ES5. Some of it is already
supported in browsers like Chrome, Firefox, and Safari, and preview releases of all
the aforementioned browsers adds more. At the time of writing, even previews of
Internet Explorer 9 already implement most of ES5. I expect the situation to look
even brighter once this book hits the shelves.

 From the Library of WoweBook.Com

ptg

8.2 Updates to the Object Model 161

8.2 Updates to the Object Model
Of all the updates in ECMAScript 5, I find the updated object model to be the
most exciting. As we discussed in Chapter 7, Objects and Prototypal Inheritance,
JavaScript objects are simple mutable collections of properties, and even though
ES3 defines attributes to control whether properties can be overwritten, deleted,
and enumerated, they remain strictly internal, and thus cannot be harnessed by client
objects. This means that objects that are dependent on their (public and mutable)
properties need to employ more error checking than desired to remain reasonably
robust.

8.2.1 Property Attributes
ES5 allows user-defined property descriptors to overwrite any of the following
attributes for a given property.

• enumerable — Internal name [[Enumerable]], formerly [[DontEnum]],
controls whether the property is enumerated in for-in loops

• configurable — Internal name [[Configurable]], formerly
[[DontDelete]], controls whether the property can be deleted with delete

• writable — Internal name [[Writable]], formerly [[ReadOnly]], controls
whether the property can be overwritten

• get — Internal name [[Get]], a function that computes the return value of
property access

• set — Internal name [[Set]], a function that is called with the assigned value
when the property is assigned to

In ES5 we can set a property in two ways. The old school way, shown in
Listing 8.1, in which we simply assign a value to a property, or the new way, shown
in Listing 8.2.

Listing 8.1 Simple name/value assignment

var circle = {};
circle.radius = 4;

 From the Library of WoweBook.Com

ptg

162 ECMAScript 5th Edition

Listing 8.2 Empowered ES5 properties

TestCase("ES5ObjectTest", {
"test defineProperty": function () {
var circle = {};

Object.defineProperty(circle, "radius", {
value: 4,
writable: false,
configurable: false

});

assertEquals(4, circle.radius);
}

});

The Object.definePropertymethod can be used not only to define new
properties on an object, but also to update the descriptor of a property. Updating
a property descriptor only works if the property’s configurable attribute is set
to true. Listing 8.3 shows an example of how you can use the existing descriptor
to update only some attributes.

Listing 8.3 Changing a property descriptor

"test changing a property descriptor": function () {
var circle = { radius: 3 };
var descriptor =
Object.getOwnPropertyDescriptor(circle, "radius");

descriptor.configurable = false;
Object.defineProperty(circle, "radius", descriptor);
delete circle.radius;

// Non-configurable radius cannot be deleted
assertEquals(3, circle.radius);

}

In addition to controlling the property attributes, ES5 also allows con-
trol over the internal [[Extensible]] property of an object. This property con-
trols whether or not properties can be added to the object. Calling Object.

preventExtensions(obj) shuts the object down for further extension and
cannot be undone.

Preventing object extensions and setting property attributes writable and
configurable to false means you can now create immutable objects. This
removes a lot of error checking and complexity brought on by the fact that

 From the Library of WoweBook.Com

ptg

8.2 Updates to the Object Model 163

ES3 objects are basically mutable collections of properties. The Object.seal
method can be used to seal an entire object; all of the object’s own properties
will have their configurable attribute set to false, and subsequently the
object’s [[Extensible]] property is set to false. Using a browser that supports
Object.getOwnPropertyDescriptor and Object.defineProperty,
the seal method could be implemented as in Listing 8.4.

Listing 8.4 Possible Object.seal implementation

if (!Object.seal && Object.getOwnPropertyNames &&
Object.getOwnPropertyDescriptor &&
Object.defineProperty && Object.preventExtensions) {

Object.seal = function (object) {
var properties = Object.getOwnPropertyNames(object);
var desc, prop;

for (var i = 0, l = properties.length; i < l; i++) {
prop = properties[i];
desc = Object.getOwnPropertyDescriptor(object, prop);

if (desc.configurable) {
desc.configurable = false;
Object.defineProperty(object, prop, desc);

}
}

Object.preventExtensions(object);

return object;
};

}

We can check whether or not an object is sealed using Object.isSealed.
Notice how this example also uses Object.getOwnPropertyNames, which
returns the names of all the object’s own properties, including those whose
enumerable attribute is false. The similar method Object.keys returns the
property names of all enumerable properties of an object, exactly like the method
in Prototype.js does today.

To easily make an entire object immutable, we can use the related, but even more
restrictive function Object.freeze. freezeworks like seal, and additionally
sets all the properties writable attributes to false, thus completely locking the
object down for modification.

 From the Library of WoweBook.Com

ptg

164 ECMAScript 5th Edition

8.2.2 Prototypal Inheritance
ECMAScript 5 makes prototypal inheritance in JavaScript more obvious, and avoids
the clumsy constructor convention. In ES3, the only native way to create an object
sphere that inherits from another object circle is by proxying via a constructor,
as Listing 8.5 shows.

Listing 8.5 Create an object that inherits from another object in ES3

"test es3 inheritance via constructors": function () {
var circle = { /* ... */ };

function CircleProxy() {}
CircleProxy.prototype = circle;

var sphere = new CircleProxy();

assert(circle.isPrototypeOf(sphere));
}

Additionally, there is no direct way of retrieving the prototype property in ES3.
Mozilla added a proprietary __proto__ property that fixes both of these cases, as
in Listing 8.6.

Listing 8.6 Proprietary shortcut to accessing and setting prototype

"test inheritance via proprietary __proto__": function () {
var circle = { /* ... */ };
var sphere = {};
sphere.__proto__ = circle;

assert(circle.isPrototypeOf(sphere));
}

The __proto__ property is not codified by ES5. Instead, two methods were
added to work easily with prototypes. Listing 8.7 shows how we will be doing this
in the future.

Listing 8.7 Creating an object that inherits from another object in ES5

"test inheritance, es5 style": function () {
var circle = { /* ... */ };
var sphere = Object.create(circle);

 From the Library of WoweBook.Com

ptg

8.2 Updates to the Object Model 165

assert(circle.isPrototypeOf(sphere));
assertEquals(circle, Object.getPrototypeOf(sphere));

}

You might recognize Object.create from Section 7.5.1, The Object.

create Method, in Chapter 7, Objects and Prototypal Inheritance, in which we did
in fact implement exactly such a method. The ES5 Object.create does us one
better—it can also add properties to the newly created object, as seen in Listing 8.8.

Listing 8.8 Create an object with properties

"test Object.create with properties": function () {
var circle = { /* ... */ };

var sphere = Object.create(circle, {
radius: {
value: 3,
writable: false,
configurable: false,
enumerable: true

}
});

assertEquals(3, sphere.radius);
}

As you might have guessed, Object.create sets the properties using Ob-
ject.defineProperties (which in turn usesObject.defineProperty).
Its implementation could possibly look like Listing 8.9.

Listing 8.9 Possible Object.create implementation

if (!Object.create && Object.defineProperties) {
Object.create = function (object, properties) {

function F () {}
F.prototype = object;
var obj = new F();

if (typeof properties != "undefined") {
Object.defineProperties(obj, properties);

}

return obj;
};

}

 From the Library of WoweBook.Com

ptg

166 ECMAScript 5th Edition

Because Object.defineProperties and, by extension, Object.

defineProperty cannot be fully simulated in ES3 environments, this is not
usable, but it shows how Object.create works. Also note that ES5 allows the
prototype to be null, which is not possible to emulate across browsers in ES3.

An interesting side-effect of using Object.create is that the instanceof
operator may no longer provide meaningful information, as the native Object.
create does not use a proxy constructor function to create the new object. The
only function of which the newly created object will be an instance is Object.
This may sound strange, but instanceof really isn’t helpful in a world in which
objects inherit objects. Object.isPrototypeOf helps determine relationships
between objects, and in a language with duck typing such as JavaScript, an object’s
capabilities are much more interesting than its heritage.

8.2.3 Getters and Setters
As stated in the previous section, Object.defineProperty cannot be reliably
emulated in ES3 implementations, because they do not expose property attributes.
Even so, Firefox, Safari, Chrome, and Opera all implement getters and setters,
which can be used to solve part of the defineProperty puzzle in ES3. Given
that it won’t work in Internet Explorer until version 91, getters and setters won’t be
applicable to the general web for still some time.

Getters and setters make it possible to add logic to getting and setting properties,
without requiring change in client code. Listing 8.10 shows an example in which
our circle uses getters and setters to add a virtual diameter property.

Listing 8.10 Using getters and setters

"test property accessors": function () {
Object.defineProperty(circle, "diameter", {
get: function () {

return this.radius * 2;
},

set: function (diameter) {
if (isNaN(diameter)) {
throw new TypeError("Diameter should be a number");

}

this.radius = diameter / 2;

1. Internet Explorer 8 implements Object.defineProperty, but for some reason not for client
objects.

 From the Library of WoweBook.Com

ptg

8.2 Updates to the Object Model 167

}
});

circle.radius = 4;

assertEquals(8, circle.diameter);

circle.diameter = 3;

assertEquals(3, circle.diameter);
assertEquals(1.5, circle.radius);

assertException(function () {
circle.diameter = {};

});
}

8.2.4 Making Use of Property Attributes
Using the new property attributes makes it possible to create much more sophis-
ticated programs with JavaScript. As we already saw, we can now create properly
immutable objects. Additionally, we can now also emulate how the DOM works,
by providing property accessors that have logic behind them.

Previously, I also argued that Object.create (backed by Object.

defineProperty) will obliterate the need for object constructors along with
the instanceof operator. In particular, the example given in Listing 8.7 cre-
ates an object with which the instanceof operator will only make sense with
Object. However, usingObject.createdoes not mean we cannot have a usable
instanceofoperator. Listing 8.11 shows an example in whichObject.create
is used inside a constructor to provide a meld between ES3 and ES5 style prototypal
inheritance.

Listing 8.11 Constructor using Object.create

function Circle(radius) {
var _radius;

var circle = Object.create(Circle.prototype, {
radius: {
configurable: false,
enumerable: true,

set: function (r) {

 From the Library of WoweBook.Com

ptg

168 ECMAScript 5th Edition

if (typeof r != "number" || r <= 0) {
throw new TypeError("radius should be > 0");

}

_radius = r;
},

get: function () {
return _radius;

}
}

});

circle.radius = radius;

return circle;
}

Circle.prototype = Object.create(Circle.prototype, {
diameter: {
get: function () {

return this.radius * 2;
},

configurable: false,
enumberable: true

},

circumference: { /* ... */ },
area: { /* ... */ }

});

This constructor can be used like any other, and even makes sense with
instanceof. Listing 8.12 shows a few uses of this constructor.

Listing 8.12 Using the hybrid Circle

TestCase("CircleTest", {
"test Object.create backed constructor": function () {
var circle = new Circle(3);

assert(circle instanceof Circle);
assertEquals(6, circle.diameter);

circle.radius = 6;
assertEquals(12, circle.diameter);

 From the Library of WoweBook.Com

ptg

8.2 Updates to the Object Model 169

delete circle.radius;
assertEquals(6, circle.radius);

}
});

Defining the object and constructor this way works because of the way con-
structors work. If a constructor returns an object rather than a primitive value, it will
not create a new object as this. In those cases, the new keyword is just syntactical
fluff. As the example in Listing 8.13 shows, simply calling the function works just
as well.

Listing 8.13 Using Circle without new

"test omitting new when creating circle": function () {
var circle = Circle(3);

assert(circle instanceof Circle);
assertEquals(6, circle.diameter);

}

The prototype property is a convention used with constructors in order for
the new keyword to work predictably. When we are creating our own objects and
setting up the prototype chain ourselves, we don’t really need it. Listing 8.14 shows
an example in which we leave constructors, new and instanceof behind.

Listing 8.14 Using Object.create and a function

"test using a custom create method": function () {
var circle = Object.create({}, {

diameter: {
get: function () {

return this.radius * 2;
}

},

circumference: { /* ... */ },
area: { /* ... */ },

create: {
value: function (radius) {

var circ = Object.create(this, {
radius: { value: radius }

});

return circ;

 From the Library of WoweBook.Com

ptg

170 ECMAScript 5th Edition

}
}

});

var myCircle = circle.create(3);

assertEquals(6, myCircle.diameter);
assert(circle.isPrototypeOf(myCircle));

// circle is not a function
assertException(function () {
assertFalse(myCircle instanceof circle);

});
}

This example creates a single object that exposes acreatemethod to construct
the new object. Thus there is no need for new or prototype, and prototypal
inheritance works as expected. An interesting side effect of this style is that you can
call myCircle.create(radius) to create circles that inherit from myCircle

and so on.
This is just one possible way to implement inheritance without constructors in

JavaScript. Regardless of what you think of this particular implementation, I think
the example clearly shows why constructors and the new keyword are unneeded in
JavaScript, particularly in ES5, which provides better tools for working with objects
and prototypal inheritance.

8.2.5 Reserved Keywords as Property Identifiers
In ES5, reserved keywords can be used as object property identifiers. This is par-
ticularly important in the light of the added native JSON support, because it means
that JSON is not restricted in available property names. Reserved keywords as im-
plemented in ES3 caused trouble, for instance when implementing the DOM, as
Listing 8.15 shows an example of.

Listing 8.15 Reserved keywords and property identifiers

// ES3
element.className; // HTML attribute is "class"
element.htmlFor; // HTML attribute is "for"

// Is valid ES5
element.class;
element.for;

 From the Library of WoweBook.Com

ptg

8.3 Strict Mode 171

This does not imply that the DOM API will change with ES5, but it does mean
that new APIs do not need to suffer the inconsistency of the DOM API.

8.3 Strict Mode
ECMAScript 5 allows a unit—a script or a function—to operate in a strict mode
syntax. This syntax does not allow some of ES3’s less stellar features, is less permissive
of potentially bad patterns, throws more errors, and ultimately aspires to reduce
confusion and provide developers with an easier to work with environment.

Because ES5 is supposed to be backwards compatible with ES3, or at least
implementations of it, strict mode is opt-in, an elegant way to deprecate features
scheduled for removal in future updates.

8.3.1 Enabling Strict Mode
The example in Listing 8.16 shows how strict mode can be enabled by a single string
literal directive.

Listing 8.16 Enable strict mode globally

"use strict";

// Following code is considered strict ES5 code

This simple construct may look a little silly, but it is extremely unlikely to collide
with existing semantics and is completely backwards compatible—it’s just a no-op
string literal in ES3. Because it may not be possible to port all ES3 code to strict mode
from the get-go, ES5 offers a way to enable strict mode locally. When placed inside
a function, the directive will enable strict mode inside the function only. Listing 8.17
shows an example of strict and non-strict code side-by-side in the same script.

Listing 8.17 Local strict mode

function haphazardMethod(obj) {
// Function is not evaluated as strict code

with (obj) {
// Not allowed in strict

}
}

function es5FriendlyMethod() {

 From the Library of WoweBook.Com

ptg

172 ECMAScript 5th Edition

"use strict";

// Local scope is evaluated as strict code
}

Strict mode can be enabled for evaled code as well, either by making a direct
call to eval from within other strict code, or if the code to be evaled itself begins
with the strict directive. The same rules apply to a string of code passed to the
Function constructor.

8.3.2 Strict Mode Changes
The following are changes to the language in strict mode.

8.3.2.1 No Implicit Globals

Implicit globals is likely JavaScript’s least useful and certainly least appreciated
feature. In ES3, assigning to an undeclared variable does not result in an error, or
even a warning. Rather, it creates a property of the global object, paving the way for
some truly obscure bugs. In strict mode, assigning to undeclared variables results
in a ReferenceError. Listing 8.18 shows an example.

Listing 8.18 Implicit globals

function sum(numbers) {
"use strict";
var sum = 0;

for (i = 0; i < numbers.length; i++) {
sum += numbers[i];

}

return sum;
}

// ES3: Property i is created on global object
// ES5 strict mode: ReferenceError

8.3.2.2 Functions

Strict mode offers some help when dealing with functions. For instance, an error will
now be thrown if two formal function parameters use the same identifier. In ES3
implementations, using the same identifier for more than one formal parameter

 From the Library of WoweBook.Com

ptg

8.3 Strict Mode 173

results in only the last one to be reachable inside the function (except through
arguments, in which all parameters are always reachable). Listing 8.19 shows the
new behavior compared to the current one.

Listing 8.19 Using the same identifier for more than one formal parameter

"test repeated identifiers in parameters": function () {
// Syntax error in ES5 strict mode
function es3VsEs5(a, a, a) {

"use strict";
return a;

}

// true in ES3
assertEquals(6, es3VsEs5(2, 3, 6));

}

Attempts to access the caller or callee properties of the arguments

object will throw a TypeError in strict mode.
In ES3 (and non-strict ES5), the arguments object shares a dynamic rela-

tionship with formal parameters. Modify a formal parameter, and the value in the
corresponding index of the argument object is modified too. Modify a value of the
arguments object, and the corresponding parameter changes. In strict mode, this
relationship goes away and arguments is immutable, as Listing 8.20 exemplifies.

Listing 8.20 Relationship between arguments and formal parameters

function switchArgs(a, b) {
"use strict";
var c = b;
b = a;
a = c;

return [].slice.call(arguments);
}

TestCase("ArgumentsParametersTest", {
"test should switch arguments": function () {

// Passes on ES5 strict mode
assertEquals([3, 2], switchArgs(2, 3));

// Passes on ES3
// assertEquals([2, 3], switchArgs(2, 3));

}
});

 From the Library of WoweBook.Com

ptg

174 ECMAScript 5th Edition

this is no longer coerced to an object in strict mode. In ES3 and non-strict
ES5, this will be coerced to an object if it is not one already. For instance, when
using call or apply with function objects, passing in null or undefined will
no longer cause this inside the called function to be coerced into the global object.
Neither will primitive values used as this be coerced to wrapper objects.

8.3.2.3 Objects, Properties, and Variables

eval and arguments cannot be used as identifiers in ES5 strict mode. Formal
parameters, variables, the exception object in a try-catch statement, and object
property identifiers are all affected by this restriction.

In ES3 implementations, defining an object literal with repeated property iden-
tifiers causes the latest one to overwrite the value of previous properties sharing
the identifier. In strict mode, repeating an identifier in an object literal will cause a
syntax error.

As we already saw, strict mode does not allow implicit globals. Not only will im-
plicit globals cause errors, but writing to any property of an object whosewritable
attribute is false, or writing to a non-existent property of an object whose internal
[[Extensible]] property is false will throw TypeError as well.

The delete operator will no longer fail silently in strict mode. In ES3 and
non-strict ES5, using the delete operator on a property whose configurable
attribute isfalsewill not delete the property, and the expression will returnfalse
to indicate that the deletion was not successful. In strict mode, such deletion causes
a TypeError.

8.3.2.4 Additional Restrictions

The with statement no longer exists in strict mode. Using it will simply produce a
syntax error. Some developers are less than impressed by this change, but the truth
is that it is too easy to use wrong, and easily makes code unpredictable and hard to
follow.

Octal number literals, such as 0377 (255 decimal), are not allowed in strict
mode, this also applies to parseInt("09").

8.4 Various Additions and Improvements
We have already seen most of the additions to the Object, but there is more to
ECMAScript 5 than empowered objects.

 From the Library of WoweBook.Com

ptg

8.4 Various Additions and Improvements 175

8.4.1 Native JSON
ES5 introduces native JSON support, in form of the JSON object. It supports two
methods, JSON.stringify and JSON.parse to dump and load JSON respectively.
Douglas Crockford’s json2.js provides a compatible interface for browsers that
does not yet implement the new JSON interface. This means that by loading this
library, we can start using this particular feature today. In fact, json2.js has been
widely used for some time, and several browsers already support the native JSON
object.

Both ES5 andjson2.js also addsDate.prototype.toJSON, which seri-
alizes date objects as JSON by way of Date.prototype.toISOString, which
in turn uses a simplification of the ISO 8601 Extended Format. The format is as
follows: YYYY-MM-DDTHH:mm:ss.sssZ

8.4.2 Function.prototype.bind

The bind method, as described in Chapter 6, Applied Functions and Closures, is
native to ES5. This should mean improved performance, and less code for libraries
to maintain. The previously provided implementation is mostly equivalent to the
one provided by ES5 apart from a few details. The native bind function returns
a native object, which itself has no prototype property. Rather than creating a
simple function that wraps the original function, a special type of internal object
is created that maintains the relationship to the bound function such that, e.g., the
instanceof operator works with the resulting function just like it would with
the bound function.

8.4.3 Array Extras
Lots of new functionality is added to arrays in ES5. Most of these stem from
Mozilla’s JavaScript 1.6, which has been around for some time—long enough for,
e.g., Safari’s JavaScriptCore to implement them as well. ES5 also adds Array.
isArray, which can determine if an object is an array by checking its internal
[[Class]] property. BecauseObject.prototype.toString exposes this prop-
erty, including in ES3, it can be used to provide a conforming implementation, as
seen in Listing 8.21.

Listing 8.21 Implementing Array.isArray

if (!Array.isArray) {
Array.isArray = (function () {

function isArray(object) {

 From the Library of WoweBook.Com

ptg

176 ECMAScript 5th Edition

return Object.prototype.toString.call(object) ==
"[object Array]";

}

return isArray;
}());

}

In addition to the static isArray method, Array.prototype defines a
host of new methods: indexOf, lastIndexOf, every, some, forEach, map,
filter, reduce, reduceRight.

8.5 Summary
In this chapter we have taken a brief look at some changes in JavaScript’s (hopefully)
near future. ECMAScript 5 brings the spec up to speed with innovation in the wild
and even brings some exciting new features to the language. Setting the course for
future standards—specifically ECMAScript Harmony, the working group for the
next revision to the language—ES5 introduces strict mode, opt-in deprecation of
troublesome features from JavaScript’s childhood.

Extensions to objects and properties open the door to interesting new ways
of structuring JavaScript programs. JavaScript’s prototypal nature no longer needs
to be hidden behind class-like constructors, because new Object methods make
working with prototypal inheritance easier and clearer. By finally allowing develop-
ers to both read and write property attributes, even for user-defined objects, ES5
enables better structured and more robust programs, better encapsulation, and
immutable objects.

An overview of ES5, even as selective as here, can guide us in writing code
that will more easily port to it once it’s widely adopted. We will draw from this
inspiration in the TDD examples in Part III, Real-World Test-Driven Development
in JavaScript. Before we dive into those examples, however, we will learn about
unobtrusive JavaScript and feature detection in the closing two chapters of Part II,
JavaScript for Programmers.

 From the Library of WoweBook.Com

ptg

9Unobtrusive JavaScript

In Chapter 2, The Test-Driven Development Process, we saw how test-driven
development can help create “clean code that works.” Unfortunately, even per-
ceptibly clean code can cause problems, and on the web there are many degrees of
“working.” Unobtrusive JavaScript is a term coined to describe JavaScript applied
to websites in a manner that increases user value, stays out of the user’s way, and en-
hances pages progressively in response to detected support. Unobtrusive JavaScript
guides us in our quest for truly clean code; code that either works, or knowingly
doesn’t; code that behaves in any environment for any user.

To illustrate the principles of unobtrusive JavaScript, we will review a particu-
larly obtrusive tabbed panels implementation. Equipped with our new knowledge,
we will build an improved replacement backed by unit tests.

9.1 The Goal of Unobtrusive JavaScript
Accessible websites that work for as wide an audience as possible is the ultimate
goal of unobtrusive JavaScript. Its most important principles are separation of con-
cerns and certainty over assumptions. Semantic markup is in charge of document
structure, and document structure only. Semantic HTML not only enhances acces-
sibility potential, it also provides a rich set of hooks for both CSS and JavaScript
to attach to. Visual styles and layout are the responsibility of CSS; presentational
attributes and elements should be avoided. Behavior is the domain of JavaScript,

177

 From the Library of WoweBook.Com

ptg

178 Unobtrusive JavaScript

and it should be applied through external scripts. This means that inline scripts and
intrinsic event handlers are out of the question most of the time.

The advantages of this technique are vast:

• Accessibility: A semantic document can make sense to a wider audience than
those with visual desktop browsers. Describing content with suitable tags
affords screen readers, search engine crawlers, and other user agents a better
chance of making sense of content.

• Flexibility: The document structure can be more easily modified without
requiring change to external sources. The same kind of flexibility is achieved
in JavaScript and CSS. Scripts can be refactored, tuned, and modified without
requiring change to the underlying document. Script features can more easily
be reused for new document structures.

• Robustness: Building on top of a solid foundation, behavior can be added
progressively. Applying feature detection, i.e., only adding features that can
be inferred to work, vastly decreases the chance of scripts blowing up and
ruining the user’s experience. Such a defensive approach to scripting is also
known as progressive enhancement.

• Performance: Using external scripts allows for better caching of scripts used
across web pages.

• Extensibility: Separating scripts from the markup completely means we can
more easily add more progressive enhancement for new browsers as more
advanced functionality is made available.

9.2 The Rules of Unobtrusive JavaScript
Chris Heilmann is perhaps the most well-known advocate of unobtrusive JavaScript,
and he has written and talked extensively on the topic. In 2007 he wrote “The Seven
Rules of Unobtrusive JavaScript”:

• Do not make any assumptions

• Find your hooks and relationships

• Leave traversing to the experts

• Understand browsers and users

• Understand Events

• Play well with others

• Work for the next developer

 From the Library of WoweBook.Com

ptg

9.2 The Rules of Unobtrusive JavaScript 179

Chapter 10, Feature Detection, provides a solution for the script-side of “Do not
make assumptions” and Chapter 6, Applied Functions and Closures, went over some
techniques that help “Play well with others.” Test-driven development, as described
in Chapter 2, The Test-Driven Development Process, and the examples in Part III,
Real-World Test-Driven Development in JavaScript, help us build clean code, which
for the most part takes care of “Work for the next developer.”

“Understanding Events” advises to use event handlers to decouple code. Heil-
mann promotes event delegation as an excellent technique to write lightweight
scripts with loose coupling. Event delegation takes advantage of the fact that most
user events do not only occur on target elements, but also on every containing el-
ement above it in the DOM hierarchy. For instance, given a tabbed panel, there
really is no need to attach click events to all the tabs in the panel. It is sufficient to
attach a single event handler to the parent element, and on each click determine
which tab caused the event, and activate that tab. Implementing events this way
allows for much more flexible APIs, as for instance adding new tabs will not require
any event handler logic at all. Reducing the number of handlers reduces memory
consumption and helps build snappier interfaces.

“Find your hooks and relationships” and “Leave traversing to the experts”
both deal with separation of concerns. By describing documents using rich semantic
HTML, there are lots of natural hooks inherent in the document. Again, imagine a
tabbed panel; certain markup patterns can be discovered and converted to tabbed
panels if necessary script support is available. CSS can keep separate styles for
“enabled” and “disabled” scripted tab features.

9.2.1 An Obtrusive Tabbed Panel
In contrast to such clean separation, consider the horribly obtrusive, yet disappoint-
ingly common tabbed panel solution presented in Listing 9.1.

Listing 9.1 An obtrusive implementation of a tabbed panel

<div id="cont-1">
<span class="tabs-nav tabs-selected"

style="float: left; margin-right: 5px;">
 .tabs-nav');

tabs.removeClass('tabs-selected');
$(this).parent().addClass('tabs-selected');
var className = $(this).attr('class');
var fragment_id = /fragment-\d/.exec(className);
$('.tabs-container').addClass('tabs-hide');

 From the Library of WoweBook.Com

ptg

180 Unobtrusive JavaScript

$('#'+fragment_id).removeClass('tabs-hide');"
class="fragment-1 nav">

Latest news

<span class="tabs-nav"

style="float: left; margin-right: 5px;">
 .tabs-nav');

tabs.removeClass('tabs-selected');
$(this).parent().addClass('tabs-selected');
var className = $(this).attr('class');
var fragment_id = /fragment-\d/.exec(className);
$('.tabs-container').addClass('tabs-hide');
$('#'+fragment_id).removeClass('tabs-hide');"

class="fragment-2 nav">
Sports

</div>
<div class="tabs-container" id="fragment-1">

<div class="tabbertab">

Latest news

<div>

Latest news contents [...]
</div>

</div>
</div>
<div class="tabs-container tabs-hide" id="fragment-2">

<div class="tabbertab">

Sports

<div>

Sports contents [...]
</div>

</div>
</div>
<div class="tabs-container tabs-hide" id="fragment-3">
<div class="tabbertab">

Economy

<div>

Economy contents [...]

 From the Library of WoweBook.Com

ptg

9.2 The Rules of Unobtrusive JavaScript 181

</div>
</div>

</div>

The gist of this solution is simply a list of links with inline event handlers that
toggle the display of the corresponding panel of text. This solution suffers from a
plethora of issues:

• All panels but the default selected one will be completely inaccessible to users
without JavaScript, or with insufficient JavaScript support (i.e., some screen
readers, old browsers, old and new mobile devices).

• Progressive enhancement is not possible—either it works or it doesn’t.

• Markup is heavyweight and senseless, reducing accessibility and increasing
complexity of associated CSS.

• Reusing scripts is practically impossible.

• Testing scripts is practically impossible.

• span elements are styled and scripted to act like internal anchors. a elements
provide this functionality for free.

• Poorly written script introduces unintentional global variable tabs.

• Script does not make use of markup context, instead using expensive
selectors on every click to access panels and other tabs.

9.2.2 Clean Tabbed Panel Markup
If “Find your hooks and relationships” can teach us anything, it is to start by
writing semantic and valid markup, adding ids and classes sparingly to have enough
hooks to add the scripted behavior. Analyzing the tabbed panel as implemented in
Listing 9.1, we can sum up the functionality pretty simply: One or more sections
of text is to be navigated by clicking “tabs”—links with the text section’s heading
as link text. Reasonable markup for such a requirement could be as simple as the
markup in Listing 9.2. Using HTML5 could further improve its clarity.

Listing 9.2 Tabbed panels base; semantic markup

<div class="tabbed-panel">
<ol id="news-tabs" class="nav">

Latest news
Sports
Economy

 From the Library of WoweBook.Com

ptg

182 Unobtrusive JavaScript

<div class="section">
<h2>Latest news</h2>
<p>Latest news contents [...]</p>

</div>
<div class="section">

<h2>Sports</h2>
<p>Sports contents [...]</p>

</div>
<div class="section">

<h2>Economy</h2>
<p>Economy contents [...]</p>

</div>
</div>

Note that the containing element has the class name tabbed-panel. This
is all we need to know. The script built on top of this structure could simply look
for all elements with the class name tabs that contain an ordered list (navigation)
and sub-elements with class name section. Once this structure is identified, the
script can convert the structure into a tabbed panels widget, so long as the required
functionality can be inferred to work.

In the basic version we could possibly leave out the navigational markup, and
add it in via script. However, using anchors as a “jump to” menu can easily make
sense in a non-scripted version, and it frees us from too much script-based markup
building.

This sort of markup also lends itself to easier styling. The default styles for
div.tabbed-panel will target the basic solution, aimed at environments in
which the panels are presented as a series of vertically stacked text boxes. The
script that converts the structure into tabs and panels can add a single class name
to the containing element to trigger a separate view intended for the script-driven
tabs and panels look. This way the script simply enables the functionality, and CSS
is still in complete control of the visual presentation.

9.2.3 TDD and Progressive Enhancement
Incidentally, the progressive enhancement style of user interface coding goes well
with test-driven development. By cleanly separating structure, layout, and behavior
we can keep the interface between script and markup at a minimum, enabling us
to unit test most of the logic without requiring the DOM. Enabling TDD creates
a positive circle as code written guided by tests tends to focus even more strongly
on a clean separation of concerns. The resulting decoupling allows for better code
reuse and faster tests.

 From the Library of WoweBook.Com

ptg

9.3 Do Not Make Assumptions 183

9.3 Do Not Make Assumptions
“Do not make assumptions” is perhaps the most important rule of unobtrusive
JavaScript. It sums up most aspects of clean JavaScript in a single phrasing. In
this section we will go over the most common assumptions and why they make it
challenging to write robust scripts for the web.

9.3.1 Don’t Assume You Are Alone
Never assume that scripts run in isolation. This applies to application developers
as much as library authors, because most websites today use code from at least one
external source.

Assuming scripts run in isolation makes running them alongside scripts we don’t
control harder. For the last few years, all the sites I’ve worked on use at least one
external analytics script and most of these scripts use document.write as a last
resort. document.write has a nasty side-effect of wiping the entire document
if used after the DOM has fully loaded. This means that asynchronously loading
content invoking the offending code will cause the site’s analytics script to effectively
break it completely. I’ve seen maintenance developers break down in tears as they
realize what is causing their site to fail, and it ain’t a pretty sight.

9.3.1.1 How to Avoid

The less we contribute to the global environment, the less we will depend on it.
Keeping our global footprint small reduces chances of conflicts with other scripts.
Techniques to minimize global impact were described in Chapter 6, Applied Func-
tions and Closures. Besides keeping the number of global objects low, we need to
watch out for other forms of global state, such as assigning to window.onload

or using the aforementioned document.write.

9.3.2 Don’t Assume Markup Is Correct
When separating concerns, we should strive to keep as much markup in the doc-
ument as possible. In practice this equates to using the “fallback” solution as a
basis for the scripted solution as much as possible. However, this also means that
scripts are no longer in complete control of markup, so we need to be careful. The
original markup may be compromised in many ways; it may be compromised by
other scripts, by document authors, or by invalid markup that results in a different
document structure when parsed.

 From the Library of WoweBook.Com

ptg

184 Unobtrusive JavaScript

9.3.2.1 How to Avoid

Check the required markup using script before applying a given feature. It is par-
ticularly important to verify that the complete structure required is available when
initializing widgets, so we don’t accidentally start initializing a widget only to abort
halfway because of unexpected changes in the document structure, effectively leav-
ing the user with a broken page.

9.3.3 Don’t Assume All Users Are Created Equal
Reaching a wide audience means meeting a lot of different needs. The web content
accessibility guidelines (WCAG) instruct us not to tie functionality to a single input
mechanism, such as the mouse. Triggering functionality using the mouseover

event effectively removes the feature for users unable to handle a mouse, or handle
it well enough. Besides, mouseover doesn’t make any sense on touch devices, which
are becoming increasingly popular.

9.3.3.1 How to Avoid

WCAG advices to use redundant input methods, i.e., provide keyboard alternatives
for mouse-specific events. This is a good piece of advice, but there is more to
keyboard accessibility than adding a focus event handler with every mouseover
event handler (not even possible on some elements). Ultimately, the only way to
create truly keyboard accessible websites is to test, test, and test. Ideally, those tests
are carried out by actual users, both the mouse, keyboard, and possibly even the
touch inclined.

9.3.4 Don’t Assume Support
Never use features that may not be available; test for the existence of features before
using them. This is also known as feature detection or feature testing, and we will
deal with it in more detail in Chapter 10, Feature Detection.

9.4 When Do the Rules Apply?
Although most of the principles presented in this chapter are general characteristics
of solid craftsmanship, some rules can be challenging in given cases. For instance, a
JavaScript intense application such as Gmail could prove difficult to develop using
progressive enhancement. Gmail has solved this problem by providing a scriptless
environment completely detached from its main interface. This solution certainly

 From the Library of WoweBook.Com

ptg

9.5 Unobtrusive Tabbed Panel Example 185

honors accessibility by allowing clients unable to use the main application access to
a less demanding one that can more easily support their needs. Additionally, a more
lightweight, but still heavily scripted application, is available for mobile devices with
smaller screens and less capable browsers. However, providing alternate versions is
no excuse for writing sloppy code, ignoring the fact that people use different input
methods or tightly coupling scripts with the document structure.

Many developers feel that unobtrusive JavaScript is too idealistic, and that it
does not apply in “the real world,” in which projects have budgets and deadlines.
In some cases they are right, but mostly it’s more about planning and attacking a
problem from the right angle. Quality always takes a little more effort than spewing
out anything that seems to work in whatever browser the developer keeps handy
for testing. Like TDD, coding JavaScript unobtrusively will probably slow you
down slightly as you start out, but you will reap the benefits over time because it
makes maintenance a lot easier, causes fewer errors, and produces more accessible
solutions. This translates to less time spent fixing bugs, less time spent handling
complaints from users, and possibly also less serious trouble as accessibility laws get
more comprehensive.

In 2006, target.com, an American online retailer, was sued for lack of accessi-
bility after refusing to deal with accessibility complaints since early 2005. Two years
later the company agreed to a $6 million settlement. I’m guessing that slightly raised
development costs outrank civil action any day.

Note that a website is not necessarily a web application in terms of the user
interface. Buying music, managing contacts, paying bills, and reading news rarely
need functionality that cannot be offered in a simplified way without scripts. On the
other hand, applications such as spreadsheets, real-time chat rooms, or collaborative
office tools can be hard to reproduce in a meaningful way without them.

9.5 Unobtrusive Tabbed Panel Example
We have learned a few things about unobtrusive JavaScript, and we’ve seen the
manifestation of unmaintainable obtrusive JavaScript. In this section we will walk
quickly through developing an unobtrusive tabbed panel backed by tests.

To keep this example somewhat brief, we won’t go into details on every step of
the test-driven development process taken to develop this solution. Part III, Real-
World Test-Driven Development in JavaScript, goes into the nitty-gritty of the process
and provides several complete and narrated TDD projects. In this section we will
focus on the concepts used to create an unobtrusive tabbed panel.

 From the Library of WoweBook.Com

ptg

186 Unobtrusive JavaScript

9.5.1 Setting Up the Test
To support the tabbed panel we will build a tabController interface, one test
case at a time. Each test case will target a single method in this interface, which
controls the state of the tabs and offers a callback that fires anytime the active tab
changes.

In order for tests to share the setup code, which creates the minimum markup
and keeps a reference to it available for the tests, we wrap the test cases in an
anonymous closure that is immediately executed. Inside it we can add a shortcut to
the namespaced object and a local setUp function. The setup code can be viewed
in Listing 9.3.

Listing 9.3 Test setup using a shared setUp

(function () {
var tabController = tddjs.ui.tabController;

// All test cases can share this setUp
function setUp() {
/*:DOC += <ol id="tabs">

News
Sports
Economy

*/

this.tabs = document.getElementById("tabs");
}

// Test cases go here
}());

In addition to this setup, we will use the two helpers in Listing 9.4, which simply
adds and removes class names from an element’s class attribute.

Listing 9.4 Adding and removing class names

(function () {
var dom = tddjs.namespace("dom");

function addClassName(element, cName) {
var regexp = new RegExp("(^|\\s)" + cName + "(\\s|$)");

if (element && !regexp.test(element.className)) {
cName = element.className + " " + cName;

 From the Library of WoweBook.Com

ptg

9.5 Unobtrusive Tabbed Panel Example 187

element.className = cName.replace(/^\s+|\s+$/g, "");
}

}

function removeClassName(element, cName) {
var r = new RegExp("(^|\\s)" + cName + "(\\s|$)");

if (element) {
cName = element.className.replace(r, " ");
element.className = cName.replace(/^\s+|\s+$/g, "");

}
}

dom.addClassName = addClassName;
dom.removeClassName = removeClassName;

}());

These two methods require the tddjs object and its namespace method
from Chapter 6, Applied Functions and Closures. To code along with this example,
set up a simple JsTestDriver project as described in Chapter 3, Tools of the Trade, and
save the tddjs object and its namespacemethod along with the above helpers in
lib/tdd.js. Also save the Object.create implementation from Chapter 7,
Objects and Prototypal Inheritance, in lib/object.js.

9.5.2 The tabController Object
Listing 9.5 shows the first test case, which covers the tabController object’s
create method. It accepts a container element for the tab controller. It tests its
markup requirements and throws an exception if the container is not an element
(determined by checking for the properties it’s going to use). If the element is deemed
sufficient, the tabController object is created and a class name is appended to
the element, allowing CSS to style the tabs as, well, tabs. Note how each of the tests
test a single behavior. This makes for quick feedback loops and reduces the scope
we need to concentrate on at any given time.

Thecreatemethod is going to add an event handler to the element as well, but
we will cheat a little in this example. Event handlers will be discussed in Chapter 10,
Feature Detection, and testing them will be covered through the example project in
Chapter 15, TDD and DOM Manipulation: The Chat Client.

 From the Library of WoweBook.Com

ptg

188 Unobtrusive JavaScript

Listing 9.5 Test case covering the create method

TestCase("TabControllerCreateTest", {
setUp: setUp,

"test should fail without element": function () {
assertException(function () {

tabController.create();
}, "TypeError");

},

"test should fail without element class": function () {
assertException(function () {

tabController.create({});
}, "TypeError");

},

"should return object": function () {
var controller = tabController.create(this.tabs);

assertObject(controller);
},

"test should add js-tabs class name to element":
function () {
var tabs = tabController.create(this.tabs);

assertClassName("js-tab-controller", this.tabs);
},

// Test for event handlers, explained later
});

The implementation shown in Listing 9.6 is fairly straightforward. Staying out
of the global namespace, the tabController object is implemented inside the
existing tddjs namespace.

The method makes one possibly unsafe assumption: The DOM 0 event listener
(the onclick property). The assumption the script implicitly is making is that no
other script will hijack the ol element’s onclick listener. This might seem like a
reasonable expectation, but using DOM 2 event listeners is a much safer choice.
As mentioned previously, we will defer their use to Chapter 15, TDD and DOM
Manipulation: The Chat Client, in which we’ll also discuss how to test them.

 From the Library of WoweBook.Com

ptg

9.5 Unobtrusive Tabbed Panel Example 189

Note that we’re using event delegation here, by registering a single event han-
dler for the whole list element and then passing along the event object to the event
handler.

Listing 9.6 Implementation of create

(function () {
var dom = tddjs.dom;

function create(element) {
if (!element || typeof element.className != "string") {
throw new TypeError("element is not an element");

}

dom.addClassName(element, "js-tab-controller");
var tabs = Object.create(this);

element.onclick = function (event) {
tabs.handleTabClick(event || window.event || {});

};

element = null;

return tabs;
}

function handleTabClick(event) {}

tddjs.namespace("ui").tabController = {
create: create,
handleTabClick: handleTabClick

};
}());

The event is handled by the tab controller’s handleTabClick method. Be-
cause we will discuss working around the cross-browser quirks of event handling
in Chapter 10, Feature Detection, we will skip its test case for now. The tabCon-
troller test case should concern itself with the behavior of tabs, not differing
implementations of event handling. Such tests belong in a test case dedicated to an
event interface whose purpose is to smooth over browser differences. In many cases
this role is filled by a third party JavaScript library, but there is nothing stopping us
from keeping our own set of tools for those cases in which we don’t need everything
that comes with a library. Listing 9.7 shows the resulting method.

 From the Library of WoweBook.Com

ptg

190 Unobtrusive JavaScript

Listing 9.7 Implementation of handleTabClick

function handleTabClick(event) {
var target = event.target || event.srcElement;

while (target && target.nodeType != 1) {
target = target.parentNode;

}

this.activateTab(target);
}

The handler grabs the element that triggered the event. This means the
target property of the event object in most browsers, and srcElement in In-
ternet Explorer. To accommodate browsers that occasionally fire events directly on
text nodes, it makes sure it got an element node. Finally, it passes the originating
element to the activateTab method.

9.5.3 The activateTab Method
The activateTab method accepts an element as its only argument, and given
that its tag name is of the expected type, it activates it by adding a class name. The
method also deactivates the previously activated tab.

The reason we check the tag name is the event delegation. Any element inside
the containing element will cause a click event to fire, and the tabTagName prop-
erty allows us to configure which elements are considered “tabs.” Given a selector
engine, we could allow more fine-grained control of this feature by allowing arbi-
trary CSS selectors decide if an element is a tab. Another possibility is to expose
an isTab(element) method that could be overridden on specific instances to
provide custom behavior.

If and when the method changes the tabs state, it fires the onTabChange

event, passing it the current and previous tabs. Listing 9.8 shows the entire test
case.

Listing 9.8 Test case covering the activateTab method

TestCase("TabbedControllerActivateTabTest", {
setUp: function () {
setUp.call(this);
this.controller = tabController.create(this.tabs);
this.links = this.tabs.getElementsByTagName("a");
this.lis = this.tabs.getElementsByTagName("li");

},

 From the Library of WoweBook.Com

ptg

9.5 Unobtrusive Tabbed Panel Example 191

"test should not fail without anchor": function () {
var controller = this.controller;

assertNoException(function () {
controller.activateTab();

});
},

"test should mark anchor as active": function () {
this.controller.activateTab(this.links[0]);

assertClassName("active-tab", this.links[0]);
},

"test should deactivate previous tab": function () {
this.controller.activateTab(this.links[0]);
this.controller.activateTab(this.links[1]);

assertNoMatch(/(^|\s)active-tab(\s|$)/, this.links[0]);
assertClassName("active-tab", this.links[1]);

},

"test should not activate unsupported element types":
function () {

this.controller.activateTab(this.links[0]);
this.controller.activateTab(this.lis[0]);

assertNoMatch(/(^|\s)active-tab(\s|$)/, this.lis[0]);
assertClassName("active-tab", this.links[0]);

},

"test should fire onTabChange": function () {
var actualPrevious, actualCurrent;
this.controller.activateTab(this.links[0]);
this.controller.onTabChange = function (curr, prev) {
actualPrevious = prev;
actualCurrent = curr;

};

this.controller.activateTab(this.links[1]);

assertSame(actualPrevious, this.links[0]);
assertSame(actualCurrent, this.links[1]);

}
});

 From the Library of WoweBook.Com

ptg

192 Unobtrusive JavaScript

Implementation, as seen in Listing 9.9, is fairly straightforward. As the tests
indicate, the method starts by checking that it actually received an element, and
that its tag name matches the tabTagName property. It then proceeds to add
and remove class names as described above, and finally calls the onTabChange
method. Finally, we add a no-op onTabChange, ready for users to override.

Listing 9.9 The activateTab method

function activateTab(element) {
if (!element || !element.tagName ||

element.tagName.toLowerCase() != this.tabTagName) {
return;

}

var className = "active-tab";
dom.removeClassName(this.prevTab, className);
dom.addClassName(element, className);
var previous = this.prevTab;
this.prevTab = element;

this.onTabChange(element, previous);
}

tddjs.namespace("ui").tabController = {
/* ... */
activateTab: activateTab,
onTabChange: function (anchor, previous) {},
tabTagName: "a"

};

9.5.4 Using the Tab Controller
Using the tabController object we can recreate the tabbed panel in an unob-
trusive way. The improved panel will be based on the markup shown in Listing 9.2.
The script in Listing 9.10 grabs the ol element containing links to each section and
creates a tab controller with it. Doing so will cause the tabs to have the active-
tab class name toggled as we click them. We then hook into the tab controller’s
onTabChange callback and use the semantic relationship between the anchors
and the sections of information to toggle active state for panels, disabling the pre-
vious panel and enabling the current selected one. Finally, the first tab anchor is
fetched and activated.

 From the Library of WoweBook.Com

ptg

9.5 Unobtrusive Tabbed Panel Example 193

Listing 9.10 Using the tab controller

(function () {
if (typeof document == "undefined" ||

!document.getElementById) {
return;

}

var dom = tddjs.dom;
var ol = document.getElementById("news-tabs");

/* ... */

try {
var controller = tddjs.ui.tabController.create(ol);
dom.addClassName(ol.parentNode, "js-tabs");

controller.onTabChange = function (curr, prev) {
dom.removeClassName(getPanel(prev), "active-panel");
dom.addClassName(getPanel(curr), "active-panel");

};

controller.activateTab(ol.getElementsByTagName("a")[0]);
} catch (e) {}

}());

The getPanel function used in the above example uses the semantic markup
to find which panel an anchor should toggle. It extracts the part of the anchor’shref
attribute after the hash character, looks up elements with corresponding names, and
finally picks the first one it finds. It then traverses the element’s parent until it finds
a div element. The method can be seen in Listing 9.11.

Listing 9.11 Finding the panel to toggle

(function () {
/* ... */

function getPanel(element) {
if (!element || typeof element.href != "string") {
return null;

}

var target = element.href.replace(/.*#/, "");
var panel = document.getElementsByName(target)[0];

 From the Library of WoweBook.Com

ptg

194 Unobtrusive JavaScript

while (panel && panel.tagName.toLowerCase() != "div") {
panel = panel.parentNode;

}

return panel;
}

/* ... */
}());

Note that getPanel defensively checks its argument and aborts if it doesn’t
receive an actual element. This means that we can fearlessly call it using the curr
and prev anchors in the onTabChangemethod, even though the prev argument
will be undefined the first time it is called.

To make the tabbed panels appear as panels, we can sprinkle on some very
simple CSS, as seen in Listing 9.12.

Listing 9.12 Simple tabbed panel CSS

.js-tabs .section {
clear: left;
display: none;

}

.js-tabs .active-panel {
display: block;

}

.js-tabs .nav {
border-bottom: 1px solid #bbb;
margin: 0 0 6px;
overflow: visible;
padding: 0;

}

.js-tabs .nav li {
display: inline;
list-style: none;

}

.js-tabs .nav a {
background: #eee;
border: 1px solid #bbb;
line-height: 1.6;

 From the Library of WoweBook.Com

ptg

9.5 Unobtrusive Tabbed Panel Example 195

padding: 3px 8px;
}

.js-tabs a.active-tab {
background: #fff;
border-bottom-color: #fff;
color: #000;
text-decoration: none;

}

All the style rules are prefixed with “.js-tabs”, which means that they will only
take effect if the script in Listing 9.10 completes successfully. Thus, we have a nice
tabbed panel in browsers that support it and fall back to inline bookmarks and
vertically presented panels of text in unsupporting browsers.

Implementation of the unobtrusive tabs might strike you as a bit verbose and
it is not perfect. It is, however, a good start—something to build on. For instance,
rather than coding the panel handling inline as we just did, we could create a
tabbedPanel object to handle everything. Its create method could receive the
outerdiv element as argument and set up atabController and offer something
like the getPanel function as a method. It could also improve the current solution
in many ways, for example, by checking that the tabs do not activate panels outside
the root element.

By implementing the tabController separately, it can easily be used for
similar, yet different cases. One such example could be building a tabbed panel
widget in which the links referenced external URLs. The onTabChange callback
could in this case be used to fetch the external pages using XMLHttpRequest. By
design, this tabbed panel would fall back to a simple list of links just like the panel
we just built.

Because the original unobtrusive example used the jQuery library, we could
of course have done so here as well. By using it where appropriate, we’d end up
shaving off quite a few lines of code. However, although the script would end up
shorter, it would come with an additional 23kB (minimum) of library code. The
unobtrusive tab controller we just built weigh in at less than 2kB, have no external
dependencies, and work in more browsers.

As a final note, I want to show you a compact idiomatic jQuery solution as
well. Listing 9.13 shows the tabbed panel implemented in about 20 lines of (heavily
wrapped) code. Note that this solution does not check markup before enabling the
panel, and cannot be reused for other similar problems in a meaningful way.

 From the Library of WoweBook.Com

ptg

196 Unobtrusive JavaScript

Listing 9.13 Compact jQuery tabbed panels

jQuery.fn.tabs = function () {
jQuery(this).
addClass("js-tabs").
find("> ol:first a").
live("click", function () {

var a = jQuery(this);
a.parents("ol").find("a").removeClass("active-tab");
a.addClass("active-tab");

jQuery("[name="+this.href.replace(/^.*#/, "") + "]").
parents("div").
addClass("active-panel").
siblings("div.section").
removeClass("active-panel");

});

return this;
};

9.6 Summary
In this chapter we have discussed the principles of unobtrusive JavaScript and how
they can help implement websites using progressive enhancement. A particularly
obtrusive implementation of tabbed panels served to shed some light on the prob-
lems caused by making too many assumptions when coding for the client.

Unobtrusive JavaScript describes clean code the JavaScript way, including stay-
ing clean in its interaction with its surroundings, which on the web must be assumed
to be highly unstable and unpredictable.

To show how unobtrusive code can be implemented to increase accessibility
potential, lower error rates, and provide a more maintainable solution, we snuck
a peek into a test-driven development session that culminated in an unobtrusive
tabbed panel that works in browsers as old as Internet Explorer 5.0, uses no external
library, and disables itself gracefully in unsupporting environments.

In Chapter 10, Feature Detection, we will take the concept of making no as-
sumptions even further, and formalize some of the tests we used in this chapter as
we dive into feature detection, an important part of unobtrusive JavaScript.

 From the Library of WoweBook.Com

ptg

10Feature Detection

Aspiring JavaScript developers developing for the general web are faced with a
rather unique challenge, in that very little is known about the environments in which
scripts will execute. Even though we can use web analytics to gather information
about our visitors, and external resources such as Yahoo’s graded browser support
to guide us in decisions relevant to cross-browser development, we cannot fully
trust these numbers; neither can they help make our scripts future proof.

Writing cross-browser JavaScript is challenging, and the number of available
browsers is increasing. Old browsers see new version releases, the occasional new
browser appears (the most recent noticeable one being Google Chrome), and new
platforms are increasingly becoming a factor. The general web is a minefield, and
our task is to avoid the mines. Surely we cannot guarantee that our scripts will
run effortlessly on any unknown environment lurking around the Internet, but we
should be doing our very best to avoid ruining our visitors’ experience based on
bad assumptions.

In this chapter we will dive into the technique known as feature detection,
arguably the strongest approach to writing robust cross-browser scripts. We will
see how and why browser detection fails, how feature detection can be used in its
place, and how to use feature detection to allow scripts to adjust in response to
collecting knowledge about the environment’s capabilities.

197

 From the Library of WoweBook.Com

ptg

198 Feature Detection

10.1 Browser Sniffing
For as long as there has been more than one browser in popular use, developers
have tried to differentiate between them to either turn down unsupported browsers,
or provide individual code paths to deal with differences between them. Browser
sniffing mainly comes in two flavors; user agent sniffing and object detection.

10.1.1 User Agent Sniffing
Sniffing the user agent is a primitive way of detecting browsers. By inspecting the
contents of the User-Agent HTTP header, accessible through navigator.

userAgent, script authors have branched their scripts to run IE specific code for
IE and Netscape-specific code for Netscape, or commonly, deny access to unsup-
ported browsers. Unwilling to have their browsers discriminated against, browser
vendors adjusted the User-Agent header sent by the browser to include strings
known to allow the browser access. This is evident to this day; Internet Explorer still
includes the word “Mozilla” in its user agent string and Opera stopped identifying
itself as Internet Explorer not too long ago.

As if browsers with built-in lies weren’t enough, most browsers today even allow
their users to manually choose how the browser should identify itself. That’s about
as unreliable identification as you can find.

Event handling has traditionally been rocky terrain to cover consistently across
browsers. The simple event properties we used in Chapter 9, Unobtrusive JavaScript,
is supported by just about any browser in use today, whereas the more sophisticated
EventListener interface from the level 2 DOM specification is not. The spec
calls for any Node to implement this interface, which among other things define
the addEventListenermethod. Using this method we can add numerous event
listeners to an event for a specific element, and we needn’t worry about the event
property accidentally being overwritten.

Most browsers available today support the addEventListener method,
unfortunately with the exception of Internet Explorer (including version 8). IE
does, however, provide the attachEvent method, which is similar and can be
used to emulate common use cases. A naive way to work around this could involve
the use of user agent sniffing, as seen in Listing 10.1.

Listing 10.1 Browser sniffing to fix event listening

function addEventHandler(element, type, listener) {
// Bad example, don't try this at home
if (/MSIE/.test(navigator.userAgent)) {

 From the Library of WoweBook.Com

ptg

10.1 Browser Sniffing 199

element.attachEvent("on" + type, function () {
// Pass event as argument to the listener and
// correct it's this value. IE calls the listener
// with the global object as this.
return listener.call(element, window.event);

});
} else {
element.addEventListener(type, listener, false);

}
}

This piece of code makes many mistakes, but alas, is representative of lots of code
in use even to this day. The user agent sniff is potentially dangerous in a couple of
ways; it assumes that any browser that does not appear to be Internet Explorer sup-
ports addEventListener; it assumes that any browser appearing to be Internet
Explorer supports attachEvent, and makes no room for a future Internet Ex-
plorer that supports the standardized API. In other words, the code will err on some
browsers and definitely will need updating whenever Microsoft releases a standards-
compliant browser. We will improve on the example throughout this chapter.

10.1.2 Object Detection
As sniffing the user agent string became increasingly hard due to dishonest browsers,
browser detection scripts grew more sophisticated. Rather than inspecting the user
agent string, developers discovered that the type of browser could very often be
determined by checking for the presence of certain objects. For instance, the script
in Listing 10.2 updates our previous example to avoid the user agent string and
rather infer type of browser based on some objects known to exist only in Internet
Explorer.

Listing 10.2 Using object detection to sniff browser

function addEventHandler(element, type, listener) {
// Bad example, don't try this at home
if (window.ActiveXObject) {

element.attachEvent("on" + type, function () {
return listener.call(element, window.event);

});
} else {

element.addEventListener(type, listener, false);
}

}

 From the Library of WoweBook.Com

ptg

200 Feature Detection

This example suffers many of the same problems as that of our user agent sniffer.
Object detection is a very useful technique, but not to detect browsers.

Although unlikely, there is no guarantee that browsers other than Internet Ex-
plorer won’t provide a global ActiveXObject property. For instance, older ver-
sions of Opera imitated several aspects of Internet Explorer, such as the propri-
etary document.all object, to avoid being blocked by scripts that employed bad
browser detection logic.

The basic premise of browser detection relies on upfront knowledge about the
environments that will run our scripts. Browser detection, in any form, does not
scale, is not maintainable, and is inadequate as a cross-browser scripting strategy.

10.1.3 The State of Browser Sniffing
Unfortunately, browser detection still exists in the wild. Many of the popular libraries
still to this day use browser detection, and even user agent sniffing, to solve certain
cross-browser challenges. Do a search foruserAgentorbrowser in your favorite
JavaScript library, and more likely than not, you will find several decisions made
based on which browser the script thinks it’s faced with.

Browser sniffs cause problems even when they are used only to make certain
exceptions for certain browsers, because they easily break when new browser ver-
sions are released. Additionally, even if a sniff could be shown to positively iden-
tify a certain browser, it cannot be easily shown to not accidentally identify other
browsers that may not exhibit the same problems the sniffs were designed to smooth
over.

Because browser detection frequently requires updating when new browsers
are released, libraries that depend on browser sniffs put a maintenance burden on
you, the application developer. To make the situation even worse, these updates are
not necessarily backwards compatible, and may require you to rewrite code as well.
Using JavaScript libraries can help smooth over many difficult problems, but often
come at a cost that should be carefully considered.

10.2 Using Object Detection for Good
Object detection, although no good when used to detect browsers, is an excellent
technique for detecting objects. Rather than branching on browser, a much sounder
approach is branching on individual features. Before using a given feature, the script
can determine whether it is available, and in cases in which the feature is known to
have buggy implementations, the script can test the feature in a controlled setting
to determine if it can be relied upon. This is the essence of feature detection.

 From the Library of WoweBook.Com

ptg

10.2 Using Object Detection for Good 201

10.2.1 Testing for Existence
Consider once again our event handling example. Listing 10.3 uses object detection
as before, but rather than testing objects known to only exist in certain browsers, it
tests the objects we’re actually interested in using.

Listing 10.3 Using feature detection to branch event handling

function addEventHandler(element, type, listener) {
if (element.addEventListener) {

element.addEventListener(type, listener, false);
} else if (element.attachEvent && listener.call) {

element.attachEvent("on" + type, function () {
return listener.call(element, window.event);

});
} else {

// Possibly fall back to event properties or abort
}

}

This example has a much better chance of surviving in the wild, and is very un-
likely to need updating whenever a new browser is released. Internet Explorer 9 is
scheduled to implement addEventListener, and even if this browser keeps
attachEvent side by side with it to ensure backwards compatibility, our
addEventHandler is going to do the right thing. Prodding for features rather
than browser type means our script will use addEventListener if it’s available
without any manual interference. The preceding browser detection-based scripts
will all have to be updated in such a scenario.

10.2.2 Type Checking
Although Listing 10.3 prods the correct objects before using them, the feature test
is not completely accurate. The fact that the addEventListener property exists
is not necessarily a guarantee that it will work as expected. The test could be made
more accurate by checking that it is callable, as Listing 10.4 shows.

Listing 10.4 Type-checking features

function addEventHandler(element, type, listener) {
if (typeof element.addEventListener == "function") {

element.addEventListener(type, listener, false);
} else if (typeof element.attachEvent == "function" &&

typeof listener.call == "function") {
element.attachEvent("on" + type, function () {

 From the Library of WoweBook.Com

ptg

202 Feature Detection

return listener.call(element, window.event);
});

} else {
// Possibly fall back to DOM0 event properties or abort

}
}

This example employs more specific feature tests, and should ideally produce
fewer false positives. Unfortunately, it does not work at all in certain browsers. To
understand why, we need to familiarize ourselves with native and host objects.

10.2.3 Native and Host Objects
Any object whose semantics are described by the ECMAScript specification is
known as a native object. By the nature of their definition, the behavior of native
objects is generally predictable and, as such, using specific feature tests such as the
type-check in Listing 10.4 will usually provide valuable information. However, given
a buggy environment, we may encounter a browser whose typeof implementation
is doing the wrong thing even if the object in question is in fact callable and works
as expected. By making a feature test more specific we reduce the chances of false
positives, but at the same time we demand more from the environment, possibly
increasing the chances of false negatives.

Objects provided by the environment but not described by the ECMAScript
specification are known as host objects. For example, a browser’s DOM implemen-
tation consists solely of host objects. Host objects are problematic to feature test
because the ECMAScript specification defines them very loosely; “implementation-
defined” is commonly found in the description of host object behavior.

Host objects are, among other things, afforded the luxury of defining their own
result for typeof. In fact, the third edition of the ECMAScript specification does
not restrict this result in any way, and host objects may return “undefined” when
used with typeof, should they so wish. Although attachEvent most definitely
is callable in Internet Explorer, the browser is not cooperative in purveying this
information when asked with typeof, as Listing 10.5 shows.

Listing 10.5 typeof and host objects in Internet Explorer

// true in Internet Explorer, including version 8
assertEquals("object", typeof document.attachEvent);

As if this result wasn’t bad enough, other host objects such as ActiveX objects
are even worse to work with. Listing 10.6 shows a few surprising results.

 From the Library of WoweBook.Com

ptg

10.2 Using Object Detection for Good 203

Listing 10.6 Unfriendly Host object behavior

TestCase("HostObjectTest", {
"test IE host object behavior": function () {

var xhr = new ActiveXObject("Microsoft.XMLHTTP");

assertException(function () {
if (xhr.open) {

// Expectation: property exists
// Reality: exception is thrown

}
});

assertEquals("unknown", typeof xhr.open);

var element = document.createElement("div");
assertEquals("unknown", typeof element.offsetParent);

assertException(function () {
element.offsetParent;

});
}

});

In his article, “Feature Detection: State of the Art Browser Scripting”1, Peter
Michaux provides the isHostMethod method shown in Listing 10.7 to help with
feature detection and host methods.

Listing 10.7 Checking if a host object is callable

tddjs.isHostMethod = (function () {
function isHostMethod(object, property) {

var type = typeof object[property];

return type == "function" ||
(type == "object" && !!object[property]) ||
type == "unknown";

}

return isHostMethod;
}());

1. http://peter.michaux.ca/articles/feature-detection-state-of-the-art-browser-scripting

 From the Library of WoweBook.Com

http://peter.michaux.ca/articles/feature-detection-state-of-the-art-browser-scripting

ptg

204 Feature Detection

This method is able to recognize callable host objects based on the following
observations:

• ActiveX properties always have a typeof result of "unknown."

• Non-ActiveX callable host objects in Internet Explorer usually have a
typeof result of "object." The boolean coercion is required to avoid
null, which also has a typeof result of "object."

• In other browsers, callable objects tend to have a typeof result of
"function," even host methods

Using this helper, we can improve our cross-browser event handler, as seen in
Listing 10.8.

Listing 10.8 Improved feature detection for addEventHandler

function addEventHandler(element, type, listener) {
if (tddjs.isHostMethod(element, "addEventListener")) {
element.addEventListener(type, listener, false);

} else if (tddjs.isHostMethod(element, "attachEvent") &&
listener.call) {

element.attachEvent("on" + type, function () {
return listener.call(element, window.event);

});
} else {

// Possibly fall back to DOM0 event properties or abort
}

}

10.2.4 Sample Use Testing
Testing for the existence and type of an object is not always sufficient to ensure it
can be used successfully. If a browser provides a buggy implementation of some
feature, testing for its existence before using it will lead us straight into a trap. To
avoid such buggy behavior, we can write a feature test in which we use the feature
in a controlled manner before determining if the current environment supports the
feature.

The strftime implementation provided in Chapter 1, Automated Testing,
heavily relies on the String.prototype.replace method accepting a func-
tion as its second argument, a feature not available on certain older browsers.
Listing 10.9 shows an implementation of strftime that uses replace in a con-
trolled manner, and then defines the method only if the initial test passes.

 From the Library of WoweBook.Com

ptg

10.2 Using Object Detection for Good 205

Listing 10.9 Defensively defining strftime

(function () {
if (Date.prototype.strftime ||

!String.prototype.replace) {
return;

}

var str = "%a %b";
var regexp = /%([a-zA-Z])/g;
var replaced = str.replace(regexp, function (m, c) {

return "[" + m + " " + c + "]";
});

if (replaced != "[%a a] [%b b]") {
return;

}

Date.prototype.strftime = function () {
/* ... */

};

Date.formats = { /* ... */ };
}());

This way the Date.prototype.strftime method will only be provided
in browsers that can support it correctly. Thus, a feature test should be employed
before using it, as seen in Listing 10.10.

Listing 10.10 Using strftime

if (typeof Date.prototype.strftime == "function") {
// Date.prototype.strftime can be relied upon

}

// ... or
if (typeof someDate.strftime == "function") {
/* ... */

}

Because strftime is a user-defined method, the type check should be safe.
If compatibility with very old browsers was important, the strftime method

could be implemented usingmatch and a loop rather than relying on thereplace
method accepting a function argument. However, the point here is not necessarily
gaining the widest possible support, i.e., supporting Internet Explorer 5.0 probably

 From the Library of WoweBook.Com

ptg

206 Feature Detection

isn’t your main priority. Rather, feature detection allows our scripts to know if they
will succeed or not. This knowledge can be used to avoid script errors and broken
web pages.

Keep in mind that not only will the feature test avoid trouble in ancient browsers,
it is also a safeguard for new browsers with similar problems. This is especially
interesting in light of the growing number of mobile devices with JavaScript support
surfing the web. On a small device with limited resources, skipping features in either
the ECMAScript, DOM, or other specifications is not unthinkable. Now I don’t
think String.prototype.replace will regress anytime soon, but the sample
use technique is an interesting one.

In Chapter 7, Objects and Prototypal Inheritance, we already saw another ex-
ample of feature testing when we defined the Object.create method, which is
already supported by a few browsers and will appear in more browsers as support
for ECMAScript 5 becomes more widespread.

10.2.5 When to Test
In the preceding sections we have seen different kinds of tests. The addEvent-
Handler method applied feature tests at runtime, whereas the safeguard for
Date.prototype.strftime was employed at loadtime. The runtime tests
performed by addEventHandler generally provide the most reliable results be-
cause they test the actual objects they operate on. However, the tests may come
with a performance penalty and, more importantly, at this point it may already be
too late.

The overall goal of feature detection is to avoid having scripts break a web-
site beyond repair. When building on the principles of unobtrusive JavaScript, the
underlying HTML and CSS should already provide a usable experience. Applying
feature tests up front can provide enough information to abort early if the envi-
ronment is deemed unfit to run a given enhancement. However, in some cases,
not all features can be reliably detected up front. If we have already partially ap-
plied an enhancement only to discover that the environment will not be successful
in completing the enhancement, we should take steps to roll back the changes
we made. This process may complicate things, and if possible should be avoided.
The roll-back situation can sometimes be avoided by deferring actions that would
be destructive if applied alone. For example, in the case of the tabbed panel in
Chapter 9, Unobtrusive JavaScript, we could hold off adding the class name to the
panel that triggers a design that relies on the panel being fully loaded until we know
that it can do so successfully.

 From the Library of WoweBook.Com

ptg

10.3 Feature Testing DOM Events 207

10.3 Feature Testing DOM Events
Events are an integral part of most client-side web page enhancements. Most events
in common use today have been available for a long time, and for most simple cases,
testing for them won’t add much. However, as new events introduced by, e.g., the
HTML5 spec start gaining ground, we can easily find ourselves in a situation in
which we are unsure whether or not using a certain event is safe. If the event is
fundamental to the use of the enhancement we’re building, we’d better test for it
before we possibly mangle the web page for unsuspecting visitors. Another case is
genuinely useful proprietary events such as Internet Explorer’s mouseenter and
mouseleave events.

Using proprietary events, or avoiding use of buggy or non-existent events, is
one of those cases in which browser sniffing still is widely used. Even though some
events can be tested for by triggering them programmatically, this does not hold for
all events, and doing so is often cumbersome and error-prone.

Juriy Zaytsev of perfectionkills.com has released anisEventSupportedutil-
ity that makes feature testing events a breeze. Not only is using the utility simple,
the implementation is based on two very simple facts as well:

• Most modern browsers expose a property corresponding to supported
events on element objects, i.e., "onclick" in document.

documentElement is true in most browsers whereas "onjump" in

document.documentElement is not.

• Firefox does not expose same-named properties as the events an element
supports. However, if an attribute named after a supported event is set on an
element, methods of the same name are exposed.

In and of itself a simple concept, the hard part is discovering it. Some browsers
require relevant elements to test on in order for this to work; testing for the on-
change event on a div element will not necessarily uncover if the browser sup-
ports onchange. With this knowledge, we can peruse Juriy’s implementation in
Listing 10.11.

Listing 10.11 Feature detecting events

tddjs.isEventSupported = (function () {
var TAGNAMES = {

select: "input",
change: "input",
submit: "form",

 From the Library of WoweBook.Com

ptg

208 Feature Detection

reset: "form",
error: "img",
load: "img",
abort: "img"

};

function isEventSupported(eventName) {
var tagName = TAGNAMES[eventName];
var el = document.createElement(tagName || "div");
eventName = "on" + eventName;
var isSupported = (eventName in el);

if (!isSupported) {
el.setAttribute(eventName, "return;");
isSupported = typeof el[eventName] == "function";

}

el = null;

return isSupported;
}

return isEventSupported;
}());

The method uses an object as look-up for suitable elements to test a given
event on. If no special case is needed, a div element is used. It then tests the two
cases presented above and reports back the result. We’ll see an example of using
isEventSupported in Section 10.5, Cross-Browser Event Handlers.

Although the above method is good for a lot of cases, it is unfortunately not
completely infallible. While working on this chapter I was informed by one of my
reviewers, Andrea Giammarchi, that new versions of Chrome claim to support touch
events even when the device running the browser is incapable of firing them. This
means that if you need to test for touch events, you should use additional tests to
verify their existence.

10.4 Feature Testing CSS Properties
If JavaScript is executing, surely CSS will work as well? This is a common assump-
tion, and even though it is likely to be right in many cases, the two features are
entirely unrelated and the assumption is dangerous to make.

In general, scripts should not be overly concerned with CSS and the visual as-
pects of the web page. The markup is usually the best interface between the script

 From the Library of WoweBook.Com

ptg

10.4 Feature Testing CSS Properties 209

and CSS—add and remove class names, add, delete, or move elements and make
other modifications to the DOM to trigger new CSS selectors, and by extension
alternative designs. However, there are cases in which we need to adjust the presen-
tational aspects from script, for instance when we need to modify dimensions and
position in ways that CSS cannot express.

Determining basic CSS property support is easy. For each supported CSS prop-
erty, an element’s style object will provide a string property with a corresponding
camel cased name. Listing 10.12 shows an example in which we check whether the
current environment supports the CSS3 property box-shadow.

Listing 10.12 Detecting support for box-shadow

tddjs.isCSSPropertySupported = (function () {
var element = document.createElement("div");

function isCSSPropertySupported(property) {
return typeof element.style[property] == "string";

}

return isCSSPropertySupported;
}());

// True in browsers that support box-shadow
assert(tddjs.isCSSPropertySupported("boxShadow"));

Because the box-shadow property still lives in a draft specification, most
vendors that support it does so under a vendor-specific prefix, such as -moz-
and -webkit-. Juriy Zaytsev, who wrote the original isEventSupported, also
published a getStyleProperty method, which accepts a style property, and
returns the property supported in the current environment. Listing 10.13 shows its
behavior.

Listing 10.13 Get supported style properties

// "MozBoxShadow" in Firefox
// "WebkitBoxShadow" in Safari
// undefined in Internet Explorer
getStyleProperty("boxShadow");

This method can be useful in some cases, but the test is not very strong. Even
though the property exists as a string on an element’s style property, the
browser may have problems with its implementation of the property. Ryan Morr
has written a isStyleSupported method that uses getComputedStyle in

 From the Library of WoweBook.Com

ptg

210 Feature Detection

supporting browsers, and runtimeStyle in Internet Explorer to check if the
browser accepts specific values for various properties. The method can be found at
http://ryanmorr.com/archives/detecting-browser-css-style-support.

10.5 Cross-Browser Event Handlers
As illustrated throughout this chapter, event handling is not a cross-browser picnic.
To see a more complete example of how to utilize feature detection to harden
scripts, we will add a cross-browser addEventHandler function to the tddjs
namespace, which we will use in Part III, Real-World Test-Driven Development in
JavaScript. The API will only be created if the current environment is deemed able
to support it.

The method needs either addEventListener or attachEvent to work.
Falling back to event properties is not sufficient unless we build a registry on top
of them, allowing addEventHandler still to accept several handlers for an event
on a specific element. This is possible, but considering the browser’s such a solution
would likely target, probably not worth the effort or the added weight. Further, we
test for Function.prototype.call, which is needed in the attachEvent
branch. The final method can be seen in Listing 10.14.

Listing 10.14 Feature detection based cross-browser event handling

(function () {
var dom = tddjs.namespace("dom");
var _addEventHandler;

if (!Function.prototype.call) {
return;

}

function normalizeEvent(event) {
event.preventDefault = function () {

event.returnValue = false;
};

event.target = event.srcElement;
// More normalization

return event;
}

 From the Library of WoweBook.Com

http://ryanmorr.com/archives/detecting-browser-css-style-support

ptg

10.5 Cross-Browser Event Handlers 211

if (tddjs.isHostMethod(document, "addEventListener")) {
_addEventHandler = function (element, event, listener) {

element.addEventListener(event, listener, false);
};

} else if (tddjs.isHostMethod(document, "attachEvent")) {
_addEventHandler = function (element, event, listener) {

element.attachEvent("on" + event, function () {
var event = normalizeEvent(window.event);
listener.call(element, event);

return event.returnValue;
});

};
} else {
return;

}

dom.addEventHandler = _addEventHandler;
}());

This implementation is not complete; for instance, the event object is not suf-
ficiently normalized. Because details are less important than the overall concept in
this example, I leave further normalization as an exercise to the reader. Note that the
event object is a host object, and so you may not be comfortable adding properties
on it. An alternative approach could be to return a regular object that maps calls to
the event object.

tddjs.dom.addEventHandler operates as a proxy for registering event
handlers, opening the door to supporting custom events. One example of such a
custom event is the proprietary mouseenter event mentioned previously, only
supported by Internet Explorer. The mouseenter event only fires once as the
mouse enters the bounds of an element. This is more helpful than mouseover in
many cases, as event bubbling causes the latter to fire every time the user’s mouse
enters one of the target element’s descendants, not only when the mouse enters the
target element.

To allow for custom events, we can wrap the _addEventHandler function
and have it first look for custom events in the dom.customEvents namespace.
The mouseenter implementation is added to this namespace only if the environ-
ment does not already support it—we don’t want to override a native event with
an inferior version—and if the required mouseover and mouseout events are
supported. Listing 10.15 shows a possible implementation.

 From the Library of WoweBook.Com

ptg

212 Feature Detection

Listing 10.15 Custom event handlers in addEventHandler

(function () {
/* ... */

function mouseenter(el, listener) {
var current = null;

_addEventHandler(el, "mouseover", function (event) {
if (current !== el) {
current = el;
listener.call(el, event);

}
});

_addEventHandler(el, "mouseout", function (e) {
var target = e.relatedTarget || e.toElement;

try {
if (target && !target.nodeName) {

target = target.parentNode;
}

} catch (exp) {
return;

}

if (el !== target && !dom.contains(el, target)) {
current = null;

}
});

}

var custom = dom.customEvents = {};

if (!tddjs.isEventSupported("mouseenter") &&
tddjs.isEventSupported("mouseover") &&
tddjs.isEventSupported("mouseout")) {

custom.mouseenter = mouseenter;
}

dom.supportsEvent = function (event) {
return tddjs.isEventSupported(event) || !!custom[event];

};

function addEventHandler(element, event, listener) {
if (dom.customEvents && dom.customEvents[event]) {

 From the Library of WoweBook.Com

ptg

10.6 Using Feature Detection 213

return dom.customEvents[event](element, listener);
}

return _addEventHandler(element, event, listener);
}

dom.addEventHandler = addEventHandler;
}());

The mouseenter implementation keeps track of whether the mouse is cur-
rently hovering the target element, and fires anytime a mouseover is fired and the
mouse wasn’t previously hovering it. The method usesdom.contains(parent,
child), which returns true if an element contains another. The try-catch pro-
tects against a bug in Firefox, which will sometimes provide an XUL element as
relatedTarget. This can happen when mousing over for instance a scroll bar,
and unfortunately XUL elements throw exceptions on any property access. Addi-
tionally, the relatedTarget may be a text node, fetching its parentNode gets
us back on track.

To practice feature detection, I encourage you to take this method for a spin,
find more browser quirks, and smooth them over by detecting erroneous behavior
and correcting it.

10.6 Using Feature Detection
Feature detection is a powerful tool in cross-browser scripting. It can allow many
features to be implemented for a very wide array of browsers; old, current, and future
ones. That does not necessarily mean that employing feature detection implies that
you should provide fallback solutions for any feature that may not be supported.
Sometimes, dropping support for old browsers can be a statement in itself, but we
should be able to do so without sniffing out the browsers we want to send down
the degradation path.

10.6.1 Moving Forward
If supporting a troublesome old browser, oh say Internet Explorer 6, costs more
than the benefits can defend, businesses sometimes actively decide to drop sup-
port. Doing so does not mean we should pretend “unsupported” browsers don’t
exist. Using unobtrusive JavaScript and feature detection can ensure that when a
browser is no longer actively developed for, it will receive the usable but possibly

 From the Library of WoweBook.Com

ptg

214 Feature Detection

basic fallback solution. In such cases, feature detection can be used to discriminate
incapable browsers.

Going back to the strftime example, if we don’t want to support
enhanced features in browsers that cannot handle a function argument to
String.prototype.replace, we simply abort the definition of the method in
browsers in which this feature test fails. Interfaces that use this method may choose
to do the same, i.e., if the strftimemethod is not available, higher level enhance-
ments that depend on it can choose to abort as well. As long as feature detection
is built into every layer of the application, avoiding some or all enhancements in
inadequate browsers should not be too complicated. The upside of this approach
is that it will work with all browsers that don’t support the required functionality,
old and new alike, and even those we aren’t aware of.

10.6.2 Undetectable Features
Some features are hard to detect. An example can be found in how Internet Ex-
plorer 6 renders certain replaced elements, such asselect lists. Displaying another
element over such a list will cause the list to show through the overlaid element.
The quirk can be fixed by layering an iframe behind the overlay. Even if we cannot
detect this problem, the fix is not known to cause problems in other browsers, and
so can be safely employed in all browsers. If the fix to a problem won’t have ill
effects in any browsers, applying the fix for everyone can often be simpler than de-
tecting the problem. Before applying a fix preemptively, it’s a good idea to consider
performance implications.

Designing the problem away is another technique that is highly effective at
avoiding cross-browser woes. For instance, IE’s implementation of getElement-
ById will gladly return elements whose name property matches the provided id.
This problem is simple to detect and work around, yet it is even simpler to make
sure HTML elements never use ids that match some name property on the page,
perhaps by prefixing ids.

10.7 Summary
In this chapter we dove into feature detection, the most reliable and future proof
technique available for writing cross-browser JavaScript. Browser sniffing in various
forms has several pitfalls, and cannot be trusted. Not only is this technique unreliable
and brittle, but it also requires knowledge about specific browsers in a way that make
it a maintainability nightmare.

 From the Library of WoweBook.Com

ptg

10.7 Summary 215

Feature detection—self testing code—was explored as an alternative to browser
sniffing, and we have seen examples of testing both native and host objects and meth-
ods, as well prodding for supported events and CSS properties and even supported
CSS values.

Feature detection is an art, and it is not an easy one to master. Fully mastering
feature detection requires knowledge and experience as well as good judgment.
Rarely is there a single answer, so we must apply our best sense and always be on
the lookout for better ways to harden our scripts. Even though feature detection
is well fit to create scripts with the widest possible support surface, it need not be
used for that purpose. The main motivation when producing scripts for the general
web should stay on avoiding broken web pages, and feature detection can help in
this regard by aborting scripts that are unlikely to succeed.

This chapter concludes our selective tour of the JavaScript language. In Part III,
Real-World Test-Driven Development in JavaScript, we will use test-driven devel-
opment to work through five small projects that combined produce a small chat
application implemented entirely in JavaScript.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

Part III

Real-World Test-Driven
Development in

JavaScript

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

11The Observer Pattern

The Observer pattern (also known as Publish/Subscribe, or simply pub/sub)
is a design pattern that allows us to observe the state of an object and be notified
when it changes. The pattern can provide objects with powerful extension points
while maintaining loose coupling.

In this chapter we will let tests drive us through our first library. By focusing on
a low-level library that deals with communication between JavaScript objects, we
avoid the world of the DOM, staying clear of the nastiest browser inconsistencies.
Working through this chapter will show you how to

• Design an API using tests.

• Continuously improve design by refactoring—both tests and production
code.

• Add functionality one tiny step at a time.

• Solve simple browser inconsistencies with the help of unit tests.

• Evolve from classical language idioms to idioms that make better use of
JavaScript’s dynamic features.

There are two roles in The Observer—observable and observer. The observer is
an object or function that will be notified when the state of the observable changes.
The observable decides when to update its observers and what data to provide
them with. In classical languages like Java, notification happens through a call to

219

 From the Library of WoweBook.Com

ptg

220 The Observer Pattern

observable.notifyObservers(), which has a single optional argument
(which in turn can be any object, often the observable itself). The notifyOb-
servers method in turn calls the update method on each observer, allowing
them to act in response.

11.1 The Observer in JavaScript
JavaScript traditionally lives in the browser, where it is used to power dynamic user
interfaces. In the browser, user actions are handled asynchronously by way of DOM
event handlers. In fact, the DOM event system we already know is a great example
of the Observer pattern in practice. We register some function (the observer) as
an event handler with a given DOM element (the observable). Whenever some-
thing interesting happens to the DOM element, i.e., someone clicks or drags it, the
event handler is called, allowing us to make magic happen in response to the user’s
actions.

Events appear many other places in JavaScript programming as well. Consider
an object that adds live search to an input field. Live search is the kind that uses
the XMLHttpRequest object to continuously perform server-side searches as the
user types, narrowing down the list of hits as the search phrase is typed out. The
object would need to subscribe handlers to DOM events fired by keyboard typing
in order to know when to search. It would also assign a handler to the onreadys-
tatechange event of the XMLHttpRequest object to know when results are
ready.

When the server comes back with some search results, the live search object
may choose to update its result view by way of an animation. To allow further
customization, the object may offer clients a few custom callbacks. These callbacks
can be hard-coded to the object or, preferably, it can make use of a generic solution
for handling observers.

11.1.1 The Observable Library
As discussed in Chapter 2, The Test-Driven Development Process, the test-driven
development process allows us to move in very small steps when needed. In this first
real-world example we will start out with the tiniest of steps. As we gain confidence
in our code and the process, we will gradually increase the size of our steps when
circumstances allow it (i.e., the code to implement is trivial enough). Writing code
in small frequent iterations will help us design our API piece-by-piece, as well as
help us make fewer mistakes. When mistakes occur, we will be able to fix them

 From the Library of WoweBook.Com

ptg

11.1 The Observer in JavaScript 221

quickly as errors will be easy to track down when we run tests every time we add a
handful of lines of code.

The library needs to define the role of the observer as well as theobservable.
However, in contrast to the Java solution mentioned earlier, JavaScript observers
need not be objects that conform to a certain interface. Functions are first class
objects in JavaScript, so we can simply subscribe functions directly. This means our
work consists of defining the Observable API.

11.1.2 Setting up the Environment
For this chapter we will use JsTestDriver and its default assertion framework.
Refer to Chapter 3, Tools of the Trade, if you have not yet set up JsTestDriver in your
development environment.

Listing 11.1 shows the initial project layout.

Listing 11.1 Directory layout for the observable project

chris@laptop:~/projects/observable $ tree
.
|-- jsTestDriver.conf
|-- lib
| `-- tdd.js
|-- src
| `-- observable.js
`-- test

`-- observable_test.js

The lib/tdd.js contains the tddjs object and the namespace method
developed in Chapter 6, Applied Functions and Closures. We will use these to develop
the observable interface namespaced inside tddjs.

The configuration file is just a plain default jsTestDriver configuration file that
runs the server on port 4224 and includes all script files, as seen in Listing 11.2.

Listing 11.2 The jsTestDriver.conf file

server: http://localhost:4224

load:
- lib/*.js
- src/*.js
- test/*.js

 From the Library of WoweBook.Com

ptg

222 The Observer Pattern

11.2 Adding Observers
We will kick off the project by implementing a means to add observers to an object.
Doing so will take us through writing the first test, watching it fail, passing it in the
dirtiest possible way, and finally refactoring it into something more sensible.

11.2.1 The First Test
To keep us going through the initial stages of developing the observable library,
we will keep to the Java parallel. This means that the first test will create an ob-
servable object with the Observable constructor and add an observer by calling
the addObserver method on it. To verify that this works, we will be blunt and
assume that Observable stores its observers in an array, and check that the ob-
server is the only item in that array. The test can be seen in Listing 11.3. Save it in
test/observable_test.js.

Listing 11.3 Expecting addObserver to add observer to internal array

TestCase("ObservableAddObserverTest", {
"test should store function": function () {
var observable = new tddjs.util.Observable();
var observer = function () {};

observable.addObserver(observer);

assertEquals(observer, observable.observers[0]);
}

});

11.2.1.1 Running the Test and Watching it Fail

At first glance the results of running our very first test, in Listing 11.4, is devastating.

Listing 11.4 Running the test

chris@laptop:~/projects/observable$ jstestdriver --tests all
E
Total 1 tests (Passed: 0; Fails: 0; Errors: 1) (0.00 ms)
Firefox 3.6.3 Linux: Run 1 tests \
(Passed: 0; Fails: 0; Errors 1) (0.00 ms)
Observable.addObserver.test \
should store function error (1.00 ms): \

 From the Library of WoweBook.Com

ptg

11.2 Adding Observers 223

tddjs.util is undefined
()@http://localhost:4224/.../observable_test.js:5

11.2.1.2 Making the Test Pass

Fear not! Failure is actually a good thing: It tells us where to focus our efforts.
The first serious problem is that tddjs.util doesn’t exist. Listing 11.5 adds
the object using the tddjs.namespace method. Save the listing in src/

observable.js.

Listing 11.5 Creating the util namespace

tddjs.namespace("util");

Running the tests again yields a new error, as seen in Listing 11.6.

Listing 11.6 Tests still failing

chris@laptop:~/projects/observable$ jstestdriver --tests all
E
Total 1 tests (Passed: 0; Fails: 0; Errors: 1) (1.00 ms)

Firefox 3.6.3 Linux: Run 1 tests \
(Passed: 0; Fails: 0; Errors 1) (1.00 ms)

Observable.addObserver.test \
should store function error (1.00 ms): \
tddjs.util.Observable is not a constructor
()@http://localhost:4224/.../observable_test.js:5

Listing 11.7 fixes this new issue by adding an empty Observable constructor.

Listing 11.7 Adding the constructor

(function () {
function Observable() {
}

tddjs.util.Observable = Observable;
}());

To work around the issues with named function expressions discussed in
Chapter 5, Functions, the constructor is defined using a function declaration in-
side an immediately called closure. Running the test once again brings us directly
to the next problem, seen in Listing 11.8.

 From the Library of WoweBook.Com

ptg

224 The Observer Pattern

Listing 11.8 Missing addObserver method

chris@laptop:~/projects/observable$ jstestdriver --tests all
E
Total 1 tests (Passed: 0; Fails: 0; Errors: 1) (0.00 ms)
Firefox 3.6.3 Linux: Run 1 tests \
(Passed: 0; Fails: 0; Errors 1) (0.00 ms)
Observable.addObserver.test \
should store function error (0.00 ms): \
observable.addObserver is not a function

()@http://localhost:4224/.../observable_test.js:8

Listing 11.9 adds the missing method.

Listing 11.9 Adding the addObserver method

function addObserver() {
}

Observable.prototype.addObserver = addObserver;

With the method in place, Listing 11.10 shows that the test now fails in place
of a missing observers array.

Listing 11.10 The observers array does not exist

chris@laptop:~/projects/observable$ jstestdriver --tests all
E
Total 1 tests (Passed: 0; Fails: 0; Errors: 1) (1.00 ms)
Firefox 3.6.3 Linux: Run 1 tests \
(Passed: 0; Fails: 0; Errors 1) (1.00 ms)
Observable.addObserver.test \
should store function error (1.00 ms): \
observable.observers is undefined

()@http://localhost:4224/.../observable_test.js:10

As odd as it may seem, Listing 11.11 now defines the observers array inside
the addObserver method. Remember, when a test is failing, we’re instructed to
do the simplest thing that could possibly work, no matter how dirty it feels. We will
get the chance to review our work once the test is passing.

 From the Library of WoweBook.Com

ptg

11.2 Adding Observers 225

Listing 11.11 Hard-coding the array

function addObserver(observer) {
this.observers = [observer];

}

Success! As Listing 11.12 shows, the test now passes.

Listing 11.12 Test passing

chris@laptop:~/projects/observable$ jstestdriver --tests all
.
Total 1 tests \
(Passed: 1; Fails: 0; Errors: 0) (0.00 ms)

Firefox 3.6.3 Linux: Run 1 tests \
(Passed: 1; Fails: 0; Errors 0) (0.00 ms)

11.2.2 Refactoring
While developing the current solution, we have taken the quickest possible route
to a passing test. Now that the bar is green, we can review the solution and perform
any refactoring we deem necessary. The only rule in this last step is to keep the bar
green. This means we will have to refactor in tiny steps as well, making sure we
don’t accidentally break anything.

The current implementation has two issues we should deal with. The test makes
detailed assumptions about the implementation of Observable and the addOb-
server implementation is hard-coded to our test.

We will address the hard-coding first. To expose the hard-coded solution,
Listing 11.13 augments the test to make it add two observers instead of one.

Listing 11.13 Exposing the hard-coded solution

"test should store function": function () {
var observable = new tddjs.util.Observable();
var observers = [function () {}, function () {}];

observable.addObserver(observers[0]);
observable.addObserver(observers[1]);

assertEquals(observers, observable.observers);
}

 From the Library of WoweBook.Com

ptg

226 The Observer Pattern

As expected, the test now fails. The test expects that functions added as ob-
servers should stack up like any element added to an array. To achieve this, we
will move the array instantiation into the constructor and simply delegate addOb-
server to the array method push as Listing 11.14 shows.

Listing 11.14 Adding arrays the proper way

function Observable() {
this.observers = [];

}

function addObserver(observer) {
this.observers.push(observer);

}

With this implementation in place, the test passes again, proving that we have
taken care of the hard-coded solution. However, accessing a public property and
making wild assumptions about the implementation of Observable is still an
issue. An observable object should be observable by any number of objects, but it
is of no interest to outsiders how or where the observable stores them. Ideally, we
would like to be able to check with the observable if a certain observer is registered
without groping around its insides. We make a note of the smell and move on. Later,
we will come back to improve this test.

11.3 Checking for Observers
We will add another method toObservable,hasObserver, and use it to remove
some of the clutter we added when implementing addObserver.

11.3.1 The Test
A new method starts with a new test. Listing 11.15 describes the desired behavior
for the hasObserver method.

Listing 11.15 Expecting hasObserver to return true for existing observers

TestCase("ObservableHasObserverTest", {
"test should return true when has observer": function () {
var observable = new tddjs.util.Observable();
var observer = function () {};

observable.addObserver(observer);

 From the Library of WoweBook.Com

ptg

11.3 Checking for Observers 227

assertTrue(observable.hasObserver(observer));
}

});

We expect this test to fail in the face of a missing hasObserver, which it
does.

11.3.1.1 Making the Test Pass

Listing 11.16 shows the simplest solution that could possibly pass the current test.

Listing 11.16 Hard-coding hasObserver’s response

function hasObserver(observer) {
return true;

}

Observable.prototype.hasObserver = hasObserver;

Even though we know this won’t solve our problems in the long run, it keeps
the tests green. Trying to review and refactor leaves us empty-handed as there are no
obvious points where we can improve. The tests are our requirements, and currently
they only require hasObserver to return true. Listing 11.17 introduces another
test that expects hasObserver to return false for a non-existent observer, which
can help force the real solution.

Listing 11.17 Expecting hasObserver to return false for non-existent observers

"test should return false when no observers": function () {
var observable = new tddjs.util.Observable();

assertFalse(observable.hasObserver(function () {}));
}

This test fails miserably, given thathasObserver always returnstrue, forcing
us to produce the real implementation. Checking if an observer is registered is a
simple matter of checking that the this.observers array contains the object
originally passed to addObserver as Listing 11.18 does.

Listing 11.18 Actually checking for observer

function hasObserver(observer) {
return this.observers.indexOf(observer) >= 0;

}

 From the Library of WoweBook.Com

ptg

228 The Observer Pattern

The Array.prototype.indexOf method returns a number less than 0 if
the element is not present in the array, so checking that it returns a number equal
to or greater than 0 will tell us if the observer exists.

11.3.1.2 Solving Browser Incompatibilities

Running the test produces somewhat surprising results as seen in the relevant excerpt
in Listing 11.19.

Listing 11.19 Funky results in Internet Explorer 6

chris@laptop:~/projects/observable$ jstestdriver --tests all
.EE
Total 3 tests (Passed: 1; Fails: 0; Errors: 2) (11.00 ms)
Microsoft Internet Explorer 6.0 Windows: Run 3 tests \
(Passed: 1; Fails: 0; Errors 2) (11.00 ms)
Observable.hasObserver.test \

should return true when has observer error (11.00 ms): \
Object doesn't support this property or method

Observable.hasObserver.test \
should return false when no observers error (0.00 ms): \
Object doesn't support this property or method

Internet Explorer versions 6 and 7 failed the test with their most generic of error
messages: “Object doesn’t support this property or method.” This can indicate any
number of issues.

• We are calling a method on an object that is null.

• We are calling a method that does not exist.

• We are accessing a property that doesn’t exist.

Luckily, TDD-ing in tiny steps, we know that the error has to relate to the re-
cently added call toindexOf on our observers array. As it turns out, IE 6 and 7 does
not support the JavaScript 1.6 method Array.prototype.indexOf (which we
cannot really blame it for, it was only recently standardized with ECMAScript 5,
December 2009). In other words, we are dealing with our first browser compatibility
issue. At this point, we have three options:

• Circumvent the use of Array.prototype.indexOf in hasObserver,
effectively duplicating native functionality in supporting browsers

• Implement Array.prototype.indexOf for non-supporting browsers.
Alternatively implement a helper function that provides the same functionality

 From the Library of WoweBook.Com

ptg

11.3 Checking for Observers 229

• Use a third-party library that provides either the missing method, or a similar
method

Which one of these approaches is best suited to solve a given problem will
depend on the situation; they all have their pros and cons. In the interest of keeping
Observable self-contained, we will simply implement hasObserver in terms
of a loop in place of the indexOf call, effectively working around the problem.
Incidentally, that also seems to be the “simplest thing that could possibly work” at
this point. Should we run into a similar situation later on, we would be advised to
reconsider our decision. Listing 11.20 shows the updated hasObserver method.

Listing 11.20 Manually looping the array

function hasObserver(observer) {
for (var i = 0, l = this.observers.length; i < l; i++) {

if (this.observers[i] == observer) {
return true;

}
}

return false;
}

11.3.2 Refactoring
With the bar back to green, it’s time to review our progress. We now have three
tests, but two of them seem strangely similar. The first test we wrote to verify the
correctness of addObserver basically tests for the same things as the test we
wrote to verify hasObserver. There are two key differences between the two
tests: The first test has previously been declared smelly, as it directly accesses the
observers array inside the observable object. The first test adds two observers,
ensuring they’re both added. Listing 11.21 joins the tests into one that verifies that
all observers added to the observable are actually added.

Listing 11.21 Removing duplicated tests

"test should store functions": function () {
var observable = new tddjs.util.Observable();
var observers = [function () {}, function () {}];

observable.addObserver(observers[0]);
observable.addObserver(observers[1]);

 From the Library of WoweBook.Com

ptg

230 The Observer Pattern

assertTrue(observable.hasObserver(observers[0]));
assertTrue(observable.hasObserver(observers[1]));

}

11.4 Notifying Observers
Adding observers and checking for their existence is nice, but without the ability
to notify them of interesting changes, Observable isn’t very useful.

In this section we will add yet another method to our library. Sticking to the Java
parallel, we will call the new method notifyObservers. Because this method
is slightly more complex than the previous methods, we will implement it step by
step, testing a single aspect of the method at a time.

11.4.1 Ensuring That Observers Are Called
The most important task notifyObservers performs is calling all the observers.
To do this, we need some way to verify that an observer has been called after the
fact. To verify that a function has been called, we can set a property on the function
when it is called. To verify the test we can check if the property is set. The test in
Listing 11.22 uses this concept in the first test for notifyObservers.

Listing 11.22 Expecting notifyObservers to call all observers

TestCase("ObservableNotifyObserversTest", {
"test should call all observers": function () {
var observable = new tddjs.util.Observable();
var observer1 = function () { observer1.called = true; };
var observer2 = function () { observer2.called = true; };

observable.addObserver(observer1);
observable.addObserver(observer2);
observable.notifyObservers();

assertTrue(observer1.called);
assertTrue(observer2.called);

}
});

To pass the test we need to loop the observers array and call each function.
Listing 11.23 fills in the blanks.

 From the Library of WoweBook.Com

ptg

11.4 Notifying Observers 231

Listing 11.23 Calling observers

function notifyObservers() {
for (var i = 0, l = this.observers.length; i < l; i++) {

this.observers[i]();
}

}

Observable.prototype.notifyObservers = notifyObservers;

11.4.2 Passing Arguments
Currently the observers are being called, but they are not being fed any data. They
know something happened, but not necessarily what. Although Java’s implemen-
tation defines the update method of observers to receive one or no arguments,
JavaScript allows a more flexible solution. We will make notifyObservers take
any number of arguments, simply passing them along to each observer. Listing 11.24
shows the requirement as a test.

Listing 11.24 Expecting arguments to notifyObservers to be passed
to observers

"test should pass through arguments": function () {
var observable = new tddjs.util.Observable();
var actual;

observable.addObserver(function () {
actual = arguments;

});

observable.notifyObservers("String", 1, 32);

assertEquals(["String", 1, 32], actual);
}

The test compares passed and received arguments by assigning the received
arguments to a variable that is local to the test. Running the test confirms that it
fails, which is not surprising as we are currently not touching the arguments inside
notifyObservers.

To pass the test we can use apply when calling the observer, as seen in
Listing 11.25.

 From the Library of WoweBook.Com

ptg

232 The Observer Pattern

Listing 11.25 Using apply to pass arguments through notifyObservers

function notifyObservers() {
for (var i = 0, l = this.observers.length; i < l; i++) {
this.observers[i].apply(this, arguments);

}
}

With this simple fix tests go back to green. Note that we sent in this as the
first argument to apply, meaning that observers will be called with the observable
as this.

11.5 Error Handling
At this point Observable is functional and we have tests that verify its behavior.
However, the tests only verify that the observables behave correctly in response to
expected input. What happens if someone tries to register an object as an observer
in place of a function? What happens if one of the observers blows up? Those are
questions we need our tests to answer. Ensuring correct behavior in expected situa-
tions is important—that is what our objects will be doing most of the time. At least
so we could hope. However, correct behavior even when the client is misbehaving
is just as important to guarantee a stable and predictable system.

11.5.1 Adding Bogus Observers
The current implementation blindly accepts any kind of argument to addOb-

server. This contrasts to the Java API we started out comparing to, which allows
objects implementing the Observer interface to register as observers. Although
our implementation can use any function as an observer, it cannot handle any value.
The test in Listing 11.26 expects the observable to throw an exception when at-
tempting to add an observer that is not callable.

Listing 11.26 Expecting non-callable arguments to cause an exception

"test should throw for uncallable observer": function () {
var observable = new tddjs.util.Observable();

assertException(function () {
observable.addObserver({});

}, "TypeError");
}

 From the Library of WoweBook.Com

ptg

11.5 Error Handling 233

By throwing an exception already when adding the observers we don’t need
to worry about invalid data later when we notify observers. Had we been pro-
gramming by contract, we could say that a precondition for the addObserver
method is that the input must be callable. The postcondition is that the observer
is added to the observable and is guaranteed to be called once the observable calls
notifyObservers.

The test fails, so we shift our focus to getting the bar green again as quickly
as possible. Unfortunately, there is no way to fake the implementation this time—
throwing an exception on any call to addObserver will fail all the other tests.
Luckily, the implementation is fairly trivial, as seen in Listing 11.27.

Listing 11.27 Throwing an exception when adding non-callable observers

function addObserver(observer) {
if (typeof observer != "function") {

throw new TypeError("observer is not function");
}

this.observers.push(observer);
}

addObserver now checks that the observer is in fact a function before adding
it to the list. Running the tests yields that sweet feeling of success: All green.

11.5.2 Misbehaving Observers
The observable now guarantees that any observer added through addObserver

is callable. Still, notifyObservers may still fail horribly if an observer throws
an exception. Listing 11.28 shows a test that expects all the observers to be called
even if one of them throws an exception.

Listing 11.28 Expecting notifyObservers to survive misbehaving observers

"test should notify all even when some fail": function () {
var observable = new tddjs.util.Observable();
var observer1 = function () { throw new Error("Oops"); };
var observer2 = function () { observer2.called = true; };

observable.addObserver(observer1);
observable.addObserver(observer2);
observable.notifyObservers();

assertTrue(observer2.called);
}

 From the Library of WoweBook.Com

ptg

234 The Observer Pattern

Running the test reveals that the current implementation blows up along with
the first observer, causing the second observer not to be called. In effect, noti-
fyObservers is breaking its guarantee that it will always call all observers once
they have been successfully added. To rectify the situation, the method needs to be
prepared for the worst, as seen in Listing 11.29.

Listing 11.29 Catching exceptions for misbehaving observers

function notifyObservers() {
for (var i = 0, l = this.observers.length; i < l; i++) {
try {

this.observers[i].apply(this, arguments);
} catch (e) {}

}
}

The exception is silently discarded. It is the observers responsibility to ensure
that any errors are handled properly, the observable is simply fending off badly
behaving observers.

11.5.3 Documenting Call Order
We have improved the robustness of the Observable module by giving it proper
error handling. The module is now able to give guarantees of operation as long as it
gets good input and it is able to recover should an observer fail to meet its require-
ments. However, the last test we added makes an assumption on undocumented
features of the observable: It assumes that observers are called in the order they
were added. Currently, this solution works because we used an array to implement
the observers list. Should we decide to change this, however, our tests may break.
So we need to decide: Do we refactor the test to not assume call order, or do we
simply add a test that expects call order, thereby documenting call order as a fea-
ture? Call order seems like a sensible feature, so Listing 11.30 adds the test to make
sure Observable keeps this behavior.

Listing 11.30 Documenting call order as a feature

"test should call observers in the order they were added":
function () {
var observable = new tddjs.util.Observable();
var calls = [];
var observer1 = function () { calls.push(observer1); };
var observer2 = function () { calls.push(observer2); };
observable.addObserver(observer1);

 From the Library of WoweBook.Com

ptg

11.6 Observing Arbitrary Objects 235

observable.addObserver(observer2);

observable.notifyObservers();

assertEquals(observer1, calls[0]);
assertEquals(observer2, calls[1]);

}

Because the implementation already uses an array for the observers, this test
succeeds immediately.

11.6 Observing Arbitrary Objects
In static languages with classical inheritance, arbitrary objects are made observable
by subclassing the Observable class. The motivation for classical inheritance
in these cases comes from a desire to define the mechanics of the pattern in one
place and reuse the logic across vast amounts of unrelated objects. As discussed
in Chapter 7, Objects and Prototypal Inheritance, we have several options for code
reuse among JavaScript objects, so we need not confine ourselves to an emulation
of the classical inheritance model.

Although the Java analogy helped us develop the basic interface, we will now
break free from it by refactoring the observable interface to embrace JavaScript’s
object model. Assuming we have a Newsletter constructor that creates
newsletter objects, there are a number of ways we can make newsletters observ-
able, as seen in Listing 11.31.

Listing 11.31 Various ways to share observable behavior

var Observable = tddjs.util.Observable;

// Extending the object with an observable object
tddjs.extend(newsletter, new Observable());

// Extending all newsletters with an observable object
tddjs.extend(Newsletter.prototype, new Observable());

// Using a helper function
tddjs.util.makeObservable(newsletter);

// Calling the constructor as a function
Observable(newsletter);

// Using a "static" method:

 From the Library of WoweBook.Com

ptg

236 The Observer Pattern

Observable.make(newsletter);

// Telling the object to "fix itself" (requires code on
// the prototype of either Newsletter or Object)
newsletter.makeObservable();

// Classical inheritance-like
Newspaper.inherit(Observable);

In the interest of breaking free of the classical emulation that constructors
provide, consider the examples in Listing 11.32, which assume that tddjs.
util.observable is an object rather than a constructor.

Listing 11.32 Sharing behavior with an observable object

// Creating a single observable object
var observable = Object.create(tddjs.util.observable);

// Extending a single object
tddjs.extend(newspaper, tddjs.util.observable);

// A constructor that creates observable objects
function Newspaper() {
/* ... */

}

Newspaper.prototype = Object.create(tddjs.util.observable);

// Extending an existing prototype
tddjs.extend(Newspaper.prototype, tddjs.util.observable);

Simply implementing the observable as a single object offers a great deal of
flexibility. To get there we need to refactor the existing solution to get rid of the
constructor.

11.6.1 Making the Constructor Obsolete
To get rid of the constructor we should first refactor Observable such that
the constructor doesn’t do any work. Luckily, the constructor only initializes the
observers array, which shouldn’t be too hard to remove. All the methods on
Observable.prototype access the array, so we need to make sure they can all
handle the case in which it hasn’t been initialized. To test for this we simply need to
write one test per method that calls the method in question before doing anything
else.

 From the Library of WoweBook.Com

ptg

11.6 Observing Arbitrary Objects 237

As seen in Listing 11.33, we already have tests that call addObserver and
hasObserver before doing anything else.

Listing 11.33 Tests targeting addObserver and hasObserver

TestCase("ObservableAddObserverTest", {
"test should store functions": function () {

var observable = new tddjs.util.Observable();
var observers = [function () {}, function () {}];

observable.addObserver(observers[0]);
observable.addObserver(observers[1]);

assertTrue(observable.hasObserver(observers[0]));
assertTrue(observable.hasObserver(observers[1]));

},

/* ... */
});

TestCase("ObservableHasObserverTest", {
"test should return false when no observers": function () {

var observable = new tddjs.util.Observable();

assertFalse(observable.hasObserver(function () {}));
}

});

ThenotifyObserversmethod however, is only tested afteraddObserver
has been called. Listing 11.34 adds a test that expects it to be possible to call this
method before adding any observers.

Listing 11.34 Expecting notifyObservers to not fail if called before
addObserver

"test should not fail if no observers": function () {
var observable = new tddjs.util.Observable();

assertNoException(function () {
observable.notifyObservers();

});
}

With this test in place, we can empty the constructor as seen in Listing 11.35.

 From the Library of WoweBook.Com

ptg

238 The Observer Pattern

Listing 11.35 Emptying the constructor

function Observable() {
}

Running the tests shows that all but one is now failing, all with the same message:
“this.observers is not defined.” We will deal with one method at a time. Listing 11.36
shows the updated addObserver method.

Listing 11.36 Defining the array if it does not exist in addObserver

function addObserver(observer) {
if (!this.observers) {
this.observers = [];

}

/* ... */
}

Running the tests again reveals that the updated addObserver method fixes
all but the two tests that do not call it before calling other methods, such as
hasObserver and notifyObservers. Next up, Listing 11.37 makes sure to
return false directly from hasObserver if the array does not exist.

Listing 11.37 Aborting hasObserver when there are no observers

function hasObserver(observer) {
if (!this.observers) {
return false;

}

/* ... */
}

We can apply the exact same fix to notifyObservers, as seen in Listing
11.38.

Listing 11.38 Aborting notifyObservers when there are no observers

function notifyObservers(observer) {
if (!this.observers) {
return;

}

/* ... */
}

 From the Library of WoweBook.Com

ptg

11.6 Observing Arbitrary Objects 239

11.6.2 Replacing the Constructor with an Object
Now that the constructor doesn’t do anything, it can be safely removed. We will then
add all the methods directly to the tddjs.util.observable object, which can
then be used with, e.g.,Object.create ortddjs.extend to create observable
objects. Note that the name is no longer capitalized as it is no longer a constructor.
Listing 11.39 shows the updated implementation.

Listing 11.39 The observable object

(function () {
function addObserver(observer) {

/* ... */
}

function hasObserver(observer) {
/* ... */

}

function notifyObservers() {
/* ... */

}

tddjs.namespace("util").observable = {
addObserver: addObserver,
hasObserver: hasObserver,
notifyObservers: notifyObservers

};
}());

Surely, removing the constructor will cause all the tests so far to break. Fixing
them is easy, however; all we need to do is to replace the new statement with a call
to Object.create, as seen in Listing 11.40.

Listing 11.40 Using the observable object in tests

TestCase("ObservableAddObserverTest", {
setUp: function () {

this.observable = Object.create(tddjs.util.observable);
},

/* ... */
});

TestCase("ObservableHasObserverTest", {
setUp: function () {

 From the Library of WoweBook.Com

ptg

240 The Observer Pattern

this.observable = Object.create(tddjs.util.observable);
},

/* ... */
});

TestCase("ObservableNotifyObserversTest", {
setUp: function () {

this.observable = Object.create(tddjs.util.observable);
},

/* ... */
});

To avoid duplicating the Object.create call, each test case gained a setUp
method that sets up the observable for testing. The test methods have to be updated
accordingly, replacing observable with this.observable.

For the tests to run smoothly on any browser, the Object.create imple-
mentation from Chapter 7, Objects and Prototypal Inheritance, needs to be saved in
lib/object.js.

11.6.3 Renaming Methods
While we are in the game of changing things we will take a moment to reduce the ver-
bosity of the interface by renaming the addObserver and notifyObservers
methods. We can shorten them down without sacrificing any clarity. Renaming
the methods is a simple case of search-replace so we won’t dwell on it too long.
Listing 11.41 shows the updated interface, I’ll trust you to update the test case
accordingly.

Listing 11.41 The refurbished observable interface

(function () {
function observe(observer) {
/* ... */

}

/* ... */

function notify() {
/* ... */

}

tddjs.namespace("util").observable = {

 From the Library of WoweBook.Com

ptg

11.7 Observing Arbitrary Events 241

observe: observe,
hasObserver: hasObserver,
notify: notify

};
}());

11.7 Observing Arbitrary Events
The current observable implementation is a little limited in that it only keeps
a single list of observers. This means that in order to observe more than one
event, observers have to determine what event occurred based on heuristics on
the data they receive. We will refactor the observable to group observers by event
names. Event names are arbitrary strings that the observable may use at its own
discretion.

11.7.1 Supporting Events in observe
To support events, the observe method now needs to accept a string argument
in addition to the function argument. The new observe will take the event as its
first argument. As we already have several tests calling the observe method, we
can start by updating the test case. Add a string as first argument to any call to
observe as seen in Listing 11.42.

Listing 11.42 Updating calls to observe

TestCase("ObservableAddObserverTest", {
/* ... */

"test should store functions": function () {
/* ... */
this.observable.observe("event", observers[0]);
this.observable.observe("event", observers[1]);
/* ... */

},

/* ... *
});

TestCase("ObservableNotifyObserversTest", {
/* ... */

"test should call all observers": function () {

 From the Library of WoweBook.Com

ptg

242 The Observer Pattern

/* ... */
this.observable.observe("event", observer1);
this.observable.observe("event", observer2);
/* ... */

},

"test should pass through arguments": function () {
/* ... */
this.observable.observe("event", function () {

actual = arguments;
});
/* ... */

},

"test should notify all even when some fail": function () {
/* ... */
this.observable.observe("event", observer1);
this.observable.observe("event", observer2);
/* ... */

},

"test should call observers in the order they were added":
function () {
/* ... */
this.observable.observe("event", observer1);
this.observable.observe("event", observer2);
/* ... */

},

/* ... */
});

Unsurprisingly, this causes all the tests to fail as observe throws an exception,
because the argument it thinks is the observer is not a function. To get tests back to
green we simply add a formal parameter to observe, as seen in Listing 11.43.

Listing 11.43 Adding a formal event parameter to observe

function observe(event, observer) {
/* ... */

}

We will repeat this exercise with both hasObserver and notify as well, to
make room for tests that describe actual functionality. I will leave updating these

 From the Library of WoweBook.Com

ptg

11.7 Observing Arbitrary Events 243

other two functions (and their tests) as an exercise. When you are done you will
note that one of the tests keep failing. We will deal with that last test together.

11.7.2 Supporting Events in notify
While updating notify to accept an event whose observers to notify, one of the
existing tests stays in the red. The test in question is the one that compares arguments
sent to notify against those received by the observer. The problem is that because
notify simply passes along the arguments it receives, the observer is now receiving
the event name in addition to the arguments it was supposed to receive.

To pass the test, Listing 11.44 uses Array.prototype.slice to pass along
all but the first argument.

Listing 11.44 Passing all but the first argument to observers

function notify(event) {
/* ... */

var args = Array.prototype.slice.call(arguments, 1);

for (var i = 0, l = this.observers.length; i < l; i++) {
try {
this.observers[i].apply(this, args);

} catch (e) {}
}

}

This passes the test and now observable has the interface to support events,
even if it doesn’t actually support them yet.

The test in Listing 11.45 specifies how the events are supposed to work. It
registers two observers to two different events. It then calls notify for only one
of the events and expects only the related observer to be called.

Listing 11.45 Expecting only relevant observers to be called

"test should notify relevant observers only": function () {
var calls = [];

this.observable.observe("event", function () {
calls.push("event");

});

this.observable.observe("other", function () {

 From the Library of WoweBook.Com

ptg

244 The Observer Pattern

calls.push("other");
});

this.observable.notify("other");

assertEquals(["other"], calls);
}

The test obviously fails as the observable happily notifies all the observers. There
is no trivial way to fix this, so we roll up our sleeves and replace the observable
array with an object.

The new object should store observers in arrays on properties whose keys are
event names. Rather than conditionally initializing the object and array in all the
methods, we can add an internal helper function that retrieves the correct array
for an event, creating both it and the object if necessary. Listing 11.46 shows the
updated implementation.

Listing 11.46 Storing observers in an object rather than an array

(function () {
function _observers(observable, event) {
if (!observable.observers) {

observable.observers = {};
}

if (!observable.observers[event]) {
observable.observers[event] = [];

}

return observable.observers[event];
}

function observe(event, observer) {
if (typeof observer != "function") {

throw new TypeError("observer is not function");
}

_observers(this, event).push(observer);
}

function hasObserver(event, observer) {
var observers = _observers(this, event);

for (var i = 0, l = observers.length; i < l; i++) {

 From the Library of WoweBook.Com

ptg

11.7 Observing Arbitrary Events 245

if (observers[i] == observer) {
return true;

}
}

return false;
}

function notify(event) {
var observers = _observers(this, event);
var args = Array.prototype.slice.call(arguments, 1);

for (var i = 0, l = observers.length; i < l; i++) {
try {
observers[i].apply(this, args);

} catch (e) {}
}

}

tddjs.namespace("util").observable = {
observe: observe,
hasObserver: hasObserver,
notify: notify

};
}());

Changing the entire implementation in one go is a bit of a leap, but given the
small size of the interface, we took a chance, and according to the tests, we succeeded.

If you are uncomfortable making such a big change in one go, you can take
smaller steps. The clue to performing structural refactorings like this in small steps
is to build the new functionality side-by-side with the old and remove the old one
first when the new one is complete.

To make the change we just made using smaller steps, you could introduce
the object backend using another name and add observers both to this and the old
array. Then, you could updatenotify to use the new object, passing the last test we
added. From there you could write more tests, e.g., for hasObserver, and switch
over from the array to the object piece by piece. When all the methods were using
the object, you could remove the array and possibly rename the object. The internal
helper function we added could be the result of refactoring away duplication.

As an exercise, I encourage you to improve the test case—find edge cases
and weak points, document them in tests and if you find problems, update the
implementation.

 From the Library of WoweBook.Com

ptg

246 The Observer Pattern

11.8 Summary
Through a series of small steps, we have managed to write a library that implements
a design pattern, ready for use in our projects. We have seen how tests can help
make design decisions, how tests form requirements, and how tests can help solve
nasty bugs—even cross-browser related ones.

While developing the library we have gotten some basic practice writing tests
and letting tests guide us through writing production code. We have also exercised
our refactoring muscles thoroughly. By starting out with the simplest thing that
could possibly work we have gained a good understanding of the important role of
refactoring in test-driven development. It is through refactoring, both in production
code and tests, that our solutions can grow refined and elegant.

In the next chapter we will deal more closely with browser inconsistencies as
we dig into the mechanics of “Ajax”, using test-driven development to implement
a higher level interface on top of the XMLHttpRequest object.

 From the Library of WoweBook.Com

ptg

12Abstracting Browser
Differences: Ajax

Ajax, (asynchronous JavaScript and XML) is a marketing term coined to
describe client technologies used to create rich internet applications, with the
XMLHttpRequest object at the center stage. It’s used heavily across the web,
usually through some JavaScript library.

In this chapter we will get to know XMLHttpRequest better by implementing
our own higher level API using test-driven development. Doing so will allow us to
touch ever so lightly on the inner workings of an “ajax call”; it will teach us how to
use test-driven development to abstract browser inconsistencies; and most impor-
tantly, it will give us an introduction to the concept of stubbing.

The API we will build in this chapter will not be the ultimate XMLHttp-

Request abstraction, but it will provide a bare minimum to work with asyn-
chronous requests. Implementing just what we need is one of the guiding principles
of test-driven development, and paving the road with tests will allow us to go just
as far as we need, providing a solid base for future extension.

12.1 Test Driving a Request API
Before we get started, we need to plan how we will be using test-driven development
to abstract browser inconsistencies. TDD can help discover inconsistencies to some
degree, but the nature of some bugs are so obscure that unit tests are unlikely to
discover them all by accident.

247

 From the Library of WoweBook.Com

ptg

248 Abstracting Browser Differences: Ajax

12.1.1 Discovering Browser Inconsistencies
Because unit tests are unlikely to accidentally discover all kinds of browser bugs,
some amount of exploration is necessary to uncover the bugs we’re abstracting.
However, unit tests can help us make sure we cover the holes by triggering offending
behavior from within tests and making sure that production code copes with these
situations. Incidentally, this is the same way we usually use unit tests to “capture”
bugs in our own logic.

12.1.2 Development Strategy
We will build the Ajax interface bottom up, starting by asserting that we can get a
hold of an XMLHttpRequest object from the browser. From there we will focus
on individual features of the object only. We will not make any server side requests
from within the unit tests themselves, because doing so will make the tests harder
to run (we’ll need someone answering those requests) and it makes it harder to
test isolated behavior. Unit tests are there to drive us through development of the
higher level API. They are going to help us develop and test the logic we build on
top of the native transport, not the logic a given browser vendor built into their
XMLHttpRequest implementation.

Testing our own logic is all fine and dandy, but we still need to test that the
implementation really works when sitting on top of an actual XMLHttpRequest
object. To do this, we will write an integration test once the API is usable. This
test will be the real deal; it will use our interface to make requests to the server. By
running it from an HTML file in the browser, we can verify that it either works or
fails gracefully.

12.1.3 The Goal
The decision to write an XMLHttpRequest wrapper without actually using it
inside the tests may sound strange at first, but allow me to remind you yet again of the
goal of test-driven development; TDD uses tests as a design tool whose main purpose
is to guide us through development. In order to truly focus on units in isolation,
we need to eliminate external dependencies as much as practically possible. For
this purpose we will use stubs extensively in this chapter. Remember that our main
focus is to learn test-driven development, meaning that we should concentrate on
the thought process and how tests form requirements. Additionally, we will keep
practicing continuous refactoring to improve the implementation, API, and tests.

Stubbing is a powerful technique that allows true isolation of the system under
test. Stubs (and mocks) have not been discussed in detail thus far, so this chapter

 From the Library of WoweBook.Com

ptg

12.2 Implementing the Request Interface 249

will serve as a test-driven introduction to the topic. JavaScript’s dynamic nature
enables us to stub manually without too much hassle. However, when we are done
with this chapter we will get a better overview of patterns that would be helpful to
have automated, even in the dynamic world of JavaScript. Chapter 16, Mocking and
Stubbing, will provide a more complete background on both stubs and mocks, but
you should be able to follow the examples in this and following chapters without
any prior experience with them.

12.2 Implementing the Request Interface
As in Chapter 11, The Observer Pattern, we will use JsTestDriver to run tests for
this project. Please refer to Chapter 3, Tools of the Trade, for an introduction and
installation guide.

12.2.1 Project Layout
The project layout can be seen in Listing 12.1 and the contents of the JsTestDriver
configuration file are found in Listing 12.2.

Listing 12.1 Directory layout for the ajax project

chris@laptop:~/projects/ajax $ tree
.
|-- jsTestDriver.conf
|-- lib
| '-- tdd.js
|-- src
| '-- ajax.js
| '-- request.js
`-- test

'-- ajax_test.js
'-- request_test.js

Listing 12.2 The jsTestDriver.conf file

server: http://localhost:4224

load:
- lib/*.js
- src/*.js
- test/*.js

 From the Library of WoweBook.Com

ptg

250 Abstracting Browser Differences: Ajax

The tdd.js file should contain the utilities built in Part II, JavaScript for
Programmers. The initial project state can be downloaded off the book’s website1

for your convenience.

12.2.2 Choosing the Interface Style
The first thing we need to decide is how we want to implement the request interface.
To make an informed decision, we need a quick reminder on how a basic XML-
HttpRequest works. The following shows the bare minimum of what needs to
be done (order matters).

1. Create an XMLHttpRequest object.

2. Call the open method with the desired HTTP verb, the URL, and a boolean
indicating whether the request is asynchronous or not; true means
asynchronous.

3. Set the object’s onreadystatechange handler.

4. Call the send method, passing in data if any.

Users of the high-level interface shouldn’t have to worry about these details.
All we really need to send a request is a URL and the HTTP verb. In most cases the
ability to register a response handler would be useful as well. The response handler
should be available in two flavors: one to handle successful requests and one to
handle failed requests.

For asynchronous requests, the onreadystatechange handler is called
asynchronously whenever the status of the request is updated. In other words, this
is where the request eventually finishes, so the handler needs some way to access
the request options such as callbacks.

12.3 Creating an XMLHttpRequest Object
Before we can dive into the request API, we need a cross-browser way to obtain an
XMLHttpRequest object. The most obvious “Ajax” browser inconsistencies are
found in the creation of this very object.

1. http://tddjs.com

 From the Library of WoweBook.Com

http://tddjs.com

ptg

12.3 Creating an XMLHttpRequest Object 251

12.3.1 The First Test
The very first test we will write is the one that expects anXMLHttpRequest object.
As outlined in Section 12.2.2, Choosing the Interface Style, the properties we rely
on are the open and sendmethods. The onreadystatechange handler needs
the readyState property to know when the request has finished. Last, but not
least, we will eventually need the setRequestHeader method in order to, well,
set request headers.

Listing 12.3 shows the test in full; save it in test/ajax_test.js.

Listing 12.3 Testing for an XMLHttpRequest object

TestCase("AjaxCreateTest", {
"test should return XMLHttpRequest object": function () {

var xhr = tddjs.ajax.create();

assertNumber(xhr.readyState);
assert(tddjs.isHostMethod(xhr, "open"));
assert(tddjs.isHostMethod(xhr, "send"));
assert(tddjs.isHostMethod(xhr, "setRequestHeader"));

}
});

This test fails as expected because there is no tddjs.ajax namespace.
Listing 12.4 shows the namespace declaration that goes in src/ajax.js. In order
for this to run, thetddjs.namespacemethod from Chapter 6, Applied Functions
and Closures, needs to be available in lib/tdd.js.

Listing 12.4 Creating the ajax namespace

tddjs.namespace("ajax");

With this in place the test fails in response to the missing create method. We
will need a little background before we can implement it.

12.3.2 XMLHttpRequest Background
Microsoft invented XMLHttpRequest as an ActiveX object back in 1999. Com-
petitors followed suit shortly after, and today the object is available in just about
every current browser. It’s even on its way to becoming a W3C standard, in Last
Call Working Draft at the time of writing. Listing 12.5 shows how the object is

 From the Library of WoweBook.Com

ptg

252 Abstracting Browser Differences: Ajax

created in the defacto standards mode versus the ActiveXObject in Internet
Explorer.

Listing 12.5 Instantiating the XMLHttpRequest object

// Proposed standard / works in most browsers
var request = new XMLHttpRequest();

// Internet Explorer 5, 5.5 and 6 (also available in IE 7)
try {
var request = new ActiveXObject("Microsoft.XMLHTTP");

} catch (e) {
alert("ActiveX is disabled");

}

Internet Explorer 7 was the first Microsoft browser to provide a quasi-native
XMLHttpRequest object, although it also provides the ActiveX object. Both
ActiveX and IE7’s native object can be disabled by users or system administra-
tors though, so we need to be careful when creating the request. Additionally, the
“native” version in IE7 is unable to make local file requests, so we will prefer the
ActiveX object if it’s available.

The ActiveX object identificator, “Microsoft.XMLHTTP” in Listing 12.5,
is known as an ActiveX ProgId. There are several available ProgId’s for the
XMLHttpRequest object, corresponding to different versions of Msxml:

• Microsoft.XMLHTTP

• Msxml2.XMLHTTP

• Msxml2.XMLHTTP.3.0

• Msxml2.XMLHTTP.4.0

• Msxml2.XMLHTTP.5.0

• Msxml2.XMLHTTP.6.0

In short, Microsoft.XMLHTTP covers IE5.x on older versions of Win-
dows, versions 4 and 5 are not intended for browser use, and the three first
ProgId’s will in most setups refer to the same object—Msxml2.XMLHTTP.3.0.
Finally, some clients may have Msxml2.XMLHTTP.6.0 installed side-by-side
with Msxml2.XMLHTTP.3.0 (which comes with IE 6). This means that ei-
ther Msxml2.XMLHTTP.6.0 or Microsoft.XMLHTTP is sufficient to re-
trieve the newest available object in Internet Explorer. Keeping things simple,

 From the Library of WoweBook.Com

ptg

12.3 Creating an XMLHttpRequest Object 253

Microsoft.XMLHTTP will do, as Msxml2.XMLHTTP.3.0 (again, ships with
IE6) includes the Microsoft.XMLHTTP alias for backwards compatibility.

12.3.3 Implementing tddjs.ajax.create
With knowledge of the different objects available, we can take a shot at implementing
ajax.create, as seen in Listing 12.6.

Listing 12.6 Creating an XMLHttpRequest object

tddjs.namespace("ajax").create = function () {
var options = [

function () {
return new ActiveXObject("Microsoft.XMLHTTP");

},

function () {
return new XMLHttpRequest();

}
];

for (var i = 0, l = options.length; i < l; i++) {
try {
return options[i]();

} catch (e) {}
}

return null;
};

Running the tests confirms that our implementation is sufficient. First test green!
Before we hasten on to the next test, we should look for possible duplication and
other areas that could be improved through refactoring. Although there is no obvi-
ous duplication in code, there is already duplication in execution—the try/catch to
find a suitable object is executed every time an object is created. This is wasteful,
and we can improve the method by figuring out which object is available before
defining it. This has two benefits: The call time overhead is eliminated, and fea-
ture detection becomes built-in. If there is no matching object to create, then there
will be no tddjs.ajax.create, which means that client code can simply test
for its existence to determine if XMLHttpRequest is supported by the browser.
Listing 12.7 improves the method.

 From the Library of WoweBook.Com

ptg

254 Abstracting Browser Differences: Ajax

Listing 12.7 Checking for support upfront

(function () {
var xhr;
var ajax = tddjs.namespace("ajax");

var options = [/* ... */]; // Same as before

for (var i = 0, l = options.length; i < l; i++) {
try {

xhr = options[i]();
ajax.create = options[i];
break;

} catch (e) {}
}

}());

With this implementation in place, the try/catch will only run at load time. If
successfully created, ajax.create will call the correct function directly. The test
still runs green, so we can focus on the next requirement.

12.3.4 Stronger Feature Detection
The test we just wrote is bound to work as long as it is run with the basic JsTestDriver
setup (seeing as JsTestDriver requires theXMLHttpRequest object or equivalent).
However, the checks we did in Listing 12.3 are really feature tests that verify the capa-
bilities of the returned object. Because we have a mechanism for verifying the object
only once, it would be nice to make the verification as strong as possible. For this
reason, Listing 12.8 performs the same tests in the initial execution, making us more
confident that a usable object is returned. It requires the tddjs.isHostMethod
method from Chapter 10, Feature Detection, in lib/tdd.js.

Listing 12.8 Adding stronger feature detection

/* ... */

try {
xhr = options[i]();

if (typeof xhr.readyState == "number" &&
tddjs.isHostMethod(xhr, "open") &&
tddjs.isHostMethod(xhr, "send") &&
tddjs.isHostMethod(xhr, "setRequestHeader")) {

ajax.create = options[i];
break;

}
} catch (e) {}

 From the Library of WoweBook.Com

ptg

12.4 Making Get Requests 255

12.4 Making Get Requests
We will start working on the request API by describing our ultimate goal: a simple
interface to make requests to the server using a URL, an HTTP verb, and possi-
bly success and failure callbacks. We’ll start with the GET request, as shown in
Listing 12.9; save it in test/request_test.js.

Listing 12.9 Test for tddjs.ajax.get

TestCase("GetRequestTest", {
"test should define get method": function () {

assertFunction(tddjs.ajax.get);
}

});

Taking baby steps, we start by checking for the existence of the get method.
As expected, it fails because the method does not exist. Listing 12.10 defines the
method. Save it in src/request.js

Listing 12.10 Defining tddjs.ajax.get

tddjs.namespace("ajax").get = function () {};

12.4.1 Requiring a URL
The get method needs to accept a URL. In fact, it needs to require a URL.
Listing 12.11 has the scoop.

Listing 12.11 Testing for a required URL

"test should throw error without url": function () {
assertException(function () {

tddjs.ajax.get();
}, "TypeError");

}

Our code does not yet throw any exceptions at all, so we expect this method to
fail because of it. Luckily it does, so we move on to Listing 12.12.

Listing 12.12 Throwing exception if URL is not a string

tddjs.namespace("ajax").get = function (url) {
if (typeof url != "string") {

throw new TypeError("URL should be string");
}

};

 From the Library of WoweBook.Com

ptg

256 Abstracting Browser Differences: Ajax

Tests pass. Now, is there any duplication to remove? That full namespace is al-
ready starting to stick out as slightly annoying. By wrapping the test in an anonymous
closure, we can “import” the ajax namespace into the local scope by assigning it
to a variable. It’ll save us four keystrokes for each reference, so we go for it, as seen
in Listing 12.13.

Listing 12.13 “Importing” the ajax namespace in the test

(function () {
var ajax = tddjs.ajax;

TestCase("GetRequestTest", {
"test should define get method": function () {

assertFunction(ajax.get);
},

"test should throw error without url": function () {
assertException(function () {
ajax.get();

}, "TypeError");
}

});
}());

We can apply the same trick to the source file as well. While we’re at it, we
can utilize the scope gained by the anonymous closure to use a named function as
well, as seen in Listing 12.14. The function declaration avoids troublesome Internet
Explorer behavior with named function expressions, as explained in Chapter 5,
Functions.

Listing 12.14 “Importing” the ajax namespace in the source

(function () {
var ajax = tddjs.namespace("ajax");

function get(url) {
if (typeof url != "string") {

throw new TypeError("URL should be string");
}

}

ajax.get = get;
}());

 From the Library of WoweBook.Com

ptg

12.4 Making Get Requests 257

12.4.2 Stubbing the XMLHttpRequest Object
In order for the get method to do anything at all, it needs to create an XML-

HttpRequest object. We simply expect it to create one using ajax.create.
Note that this does introduce a somewhat tight coupling between the request API
and the create API. A better idea would probably be to inject the transport object.
However, we will keep things simple for now. Later when we see the big picture
clearer, we can always refactor to improve.

In order to verify that an object is created, or rather, that a method is called,
we need to somehow fake the original implementation. Stubbing and mocking are
two ways to create objects that mimic real objects in tests. Along with fakes and
dummies, they are often collectively referred to as test doubles.

12.4.2.1 Manual Stubbing

Test doubles are usually introduced in tests either when original implementations are
awkward to use or when we need to isolate an interface from its dependencies. In the
case ofXMLHttpRequest, we want to avoid the real thing for both reasons. Rather
than creating an actual object, Listing 12.15 is going to stub out the ajax.create
method, make a call to ajax.get, and then assert that ajax.createwas called.

Listing 12.15 Manually stubbing the create method

"test should obtain an XMLHttpRequest object": function () {
var originalCreate = ajax.create;

ajax.create = function () {
ajax.create.called = true;

};

ajax.get("/url");

assert(ajax.create.called);

ajax.create = originalCreate;
}

The test stores a reference to the original method and overwrites it with a func-
tion that, when called, sets a flag that the test can assert on. Finally, the original
method is restored. There are a couple of problems with this solution. First of all, if
this test fails, the original method will not be restored. Asserts throw an Assert-
Error exception when they fail, meaning that the last line won’t be executed unless

 From the Library of WoweBook.Com

ptg

258 Abstracting Browser Differences: Ajax

the test succeeds. To fix this we can move the reference and restoring of the original
method to the setUp and tearDown methods respectively. Listing 12.16 shows
the updated test case.

Listing 12.16 Stubbing and restoring ajax.create safely

TestCase("GetRequestTest", {
setUp: function () {
this.ajaxCreate = ajax.create;

},

tearDown: function () {
ajax.create = this.ajaxCreate;

},

/* ... */

"test should obtain an XMLHttpRequest object":
function () {
ajax.create = function () {

ajax.create.called = true;
};

ajax.get("/url");

assert(ajax.create.called);
}

});

Before we fix the next problem, we need to implement the method in question.
All we have to do is add a single line inside ajax.get, as in Listing 12.17.

Listing 12.17 Creating the object

function get(url) {
/* ... */
var transport = tddjs.ajax.create();

}

With this single line in place the tests go green again.

12.4.2.2 Automating Stubbing

The next issue with the stubbing solution is that it’s fairly verbose. We can mitigate
this by extracting a helper method that creates a function that sets a flag when called,

 From the Library of WoweBook.Com

ptg

12.4 Making Get Requests 259

and allows access to this flag. Listing 12.18 shows one such possible method. Save
it in lib/stub.js.

Listing 12.18 Extracting a function stubbing helper

function stubFn() {
var fn = function () {

fn.called = true;
};

fn.called = false;

return fn;
}

Listing 12.19 shows the updated test.

Listing 12.19 Using the stub helper

"test should obtain an XMLHttpRequest object": function () {
ajax.create = stubFn();
ajax.get("/url");

assert(ajax.create.called);
}

Now that we know that ajax.get obtains an XMLHttpRequest object we
need to make sure it uses it correctly. The first thing it should do is call its open
method. This means that the stub helper needs to be able to return an object.
Listing 12.20 shows the updated helper and the new test expecting open to be
called with the right arguments.

Listing 12.20 Test that the open method is used correctly

function stubFn(returnValue) {
var fn = function () {

fn.called = true;
return returnValue;

};

fn.called = false;

return fn;
}

 From the Library of WoweBook.Com

ptg

260 Abstracting Browser Differences: Ajax

TestCase("GetRequestTest", {
/* ... */

"test should call open with method, url, async flag":
function () {
var actual;

ajax.create = stubFn({
open: function () {
actual = arguments;

}
});

var url = "/url";
ajax.get(url);

assertEquals(["GET", url, true], actual);
}

});

We expect this test to fail because the openmethod isn’t currently being called
from our implementation, implying that actual should be undefined. This is
exactly what happens and so we can write the implementation, as in Listing 12.21.

Listing 12.21 Calling open

function get(url) {
/* ... */
transport.open("GET", url, true);

}

Now a few interesting things happen. First, we hardcoded both the HTTP
verb and the asynchronous flag. Remember, one step at a time; we can make those
configurable later. Running the tests shows that whereas the current test succeeds,
the previous test now fails. It fails because the stub in that test did not return an
object, so our production code is attempting to call undefined.open, which
obviously won’t work.

The second test uses the stubFn function to create one stub, while manually
creating a stub openmethod in order to inspect its received arguments. To fix these
problems, we will improve stubFn and share the fake XMLHttpRequest object
between tests.

 From the Library of WoweBook.Com

ptg

12.4 Making Get Requests 261

12.4.2.3 Improved Stubbing

To kill the manual stub open method, Listing 12.22 improves the stubFn func-
tion by having it record the arguments it receives and making them available for
verification in tests.

Listing 12.22 Improving the stub helper

function stubFn(returnValue) {
var fn = function () {

fn.called = true;
fn.args = arguments;
return returnValue;

};

fn.called = false;

return fn;
}

Using the improved stubFn cleans up the second test considerably, as seen in
Listing 12.23.

Listing 12.23 Using the improved stub function

"test should call open with method, url, async flag":
function () {

var openStub = stubFn();
ajax.create = stubFn({ open: openStub });
var url = "/url";
ajax.get(url);

assertEquals(["GET", url, true], openStub.args);
}

We now generate a stub for ajax.create that is instructed to return an
object with one property: a stubbed open method. To verify the test we assert that
open was called with the correct arguments.

The second problem was that adding the call to transport.open caused the
first test, which didn’t return an object from the stubbedajax.createmethod, to
fail. To fix this we will extract a fakeXMLHttpRequestobject, which can be shared
between tests by stubbingajax.create to return it. The stub can be conveniently
created in the test case’s setUp. We will start with the fakeXMLHttpRequest
object, which can be seen in Listing 12.24. Save it in lib/fake_xhr.js.

 From the Library of WoweBook.Com

ptg

262 Abstracting Browser Differences: Ajax

Listing 12.24 Extracting fakeXMLHttpRequest

var fakeXMLHttpRequest = {
open: stubFn()

};

Because the fake object relies on stubFn, which is defined in lib/stub.js,
we need to updatejsTestDriver.conf to make sure the helper is loaded before
the fake object. Listing 12.25 shows the updated configuration file.

Listing 12.25 Updating jsTestDriver.conf to load files in correct order

server: http://localhost:4224

load:
- lib/stub.js
- lib/*.js
- src/*.js
- test/*.js

Next up, we update the test case by elevating the ajax.create stub to
setUp. To create the fakeXMLHttpRequest object we will use Object.

create from Chapter 7, Objects and Prototypal Inheritance, so place this func-
tion in lib/object.js. Listing 12.26 shows the updated test case.

Listing 12.26 Automate stubbing of ajax.create and XMLHttpRequest

TestCase("GetRequestTest", {
setUp: function () {
this.ajaxCreate = ajax.create;
this.xhr = Object.create(fakeXMLHttpRequest);
ajax.create = stubFn(this.xhr);

},

/* ... */

"test should obtain an XMLHttpRequest object":
function () {
ajax.get("/url");

assert(ajax.create.called);
},

"test should call open with method, url, async flag":
function () {

 From the Library of WoweBook.Com

ptg

12.4 Making Get Requests 263

var url = "/url";
ajax.get(url);

assertEquals(["GET", url, true], this.xhr.open.args);
}

});

Much better. Re-running the tests confirm that they now all pass. Moving for-
ward, we can add stubs to the fakeXMLHttpRequest object as we see fit, which
will make testing ajax.get significantly simpler.

12.4.2.4 Feature Detection and ajax.create

ajax.get now relies on the ajax.createmethod, which is not available in the
case that the browser does not support theXMLHttpRequestobject. To make sure
we don’t provide an ajax.get method that has no way of retrieving a transport,
we will define this method conditionally as well. Listing 12.27 shows the required
test.

Listing 12.27 Bailing out if ajax.create is not available

(function () {
var ajax = tddjs.namespace("ajax");

if (!ajax.create) {
return;

}

function get(url) {
/* ... */

}

ajax.get = get;
}());

With this test in place, clients using the ajax.get method can add a similar
test to check for its existence before using it. Layering feature detection this way
makes it manageable to decide what features are available in a given environment.

12.4.3 Handling State Changes
Next up, theXMLHttpRequestobject needs to have itsonreadystatechange
handler set to a function, as Listing 12.28 shows.

 From the Library of WoweBook.Com

ptg

264 Abstracting Browser Differences: Ajax

Listing 12.28 Verifying that the ready state handler is assigned

"test should add onreadystatechange handler": function () {
ajax.get("/url");

assertFunction(this.xhr.onreadystatechange);
}

As expected, the test fails because xhr.onreadystatechange is unde-
fined. We can assign an empty function for now, as Listing 12.29 shows.

Listing 12.29 Assigning an empty onreadystatechange handler

function get(url) {
/* ... */
transport.onreadystatechange = function () {};

}

To kick off the request, we need to call the send method. This means that we
need to add a stubbed send method to fakeXMLHttpRequest and assert that
it was called. Listing 12.30 shows the updated object.

Listing 12.30 Adding a stub send method

var fakeXMLHttpRequest = {
open: stubFn(),
send: stubFn()

};

Listing 12.31 expects the send method to be called by ajax.get.

Listing 12.31 Expecting get to call send

TestCase("GetRequestTest", {
/* ... */

"test should call send": function () {
ajax.get("/url");

assert(xhr.send.called);
}

});

 From the Library of WoweBook.Com

ptg

12.4 Making Get Requests 265

Implementation, shown in Listing 12.32, is once again a one-liner.

Listing 12.32 Calling send

function get(url) {
/* ... */
transport.send();

}

All lights are green once again. Notice howstubXMLHttpRequest is already
paying off. We didn’t need to update any of the other stubbed tests even when we
called a new method on the XMLHttpRequest object, seeing as they all get it from
the same source.

12.4.4 Handling the State Changes
ajax.get is now complete in an extremely minimalistic way. It sure ain’t done, but it
could be used to send a GET request to the server. We will turn our focus to the
onreadystatechange handler in order to allow users of the API to subscribe
to the success and failure events.

The state change handler is called as the request progresses. Typically, it will be
called once for each of these 4 states (from the W3C XMLHttpRequest spec draft.
Note that these states have other names in some implementations):

1. OPENED, open has been called, setRequestHeader and send may be
called.

2. HEADERS RECEIVED, send has been called, and headers and status are
available.

3. LOADING, Downloading; responseText holds partial data.

4. DONE, The operation is complete.

For larger responses, the handler is called with the loading state several times
as chunks arrive.

12.4.4.1 Testing for Success

To reach our initial goal, we really only care about when the request is done. When
it is done we check the request’s HTTP status code to determine if it was successful.
We can start by testing the usual case of success: ready state 4 and status 200.
Listing 12.33 shows the test.

 From the Library of WoweBook.Com

ptg

266 Abstracting Browser Differences: Ajax

Listing 12.33 Testing ready state handler with successful request

TestCase("ReadyStateHandlerTest", {
setUp: function () {
this.ajaxCreate = ajax.create;
this.xhr = Object.create(fakeXMLHttpRequest);
ajax.create = stubFn(this.xhr);

},

tearDown: function () {
ajax.create = this.ajaxCreate;

},

"test should call success handler for status 200":
function () {
this.xhr.readyState = 4;
this.xhr.status = 200;
var success = stubFn();

ajax.get("/url", { success: success });
this.xhr.onreadystatechange();

assert(success.called);
}

});

Because we are going to need quite a few tests targeting the onreadystate-
change handler, we create a new test case. This way it’s implicit that test names
describe expectations on this particular function, allowing us to skip prefixing every
test with “onreadystatechange handler should.” It also allows us to run these tests
alone should we run into trouble and need even tighter focus.

To pass this test we need to do a few things. First, ajax.get needs to accept
an object of options; currently the only supported option is a success callback. Then
we need to actually add a body to that ready state function we added in the previous
section. The implementation can be viewed in Listing 12.34.

Listing 12.34 Accepting and calling the success callback

(function () {
var ajax = tddjs.namespace("ajax");

function requestComplete(transport, options) {
if (transport.status == 200) {

 From the Library of WoweBook.Com

ptg

12.4 Making Get Requests 267

options.success(transport);
}

}

function get(url, options) {
if (typeof url != "string") {

throw new TypeError("URL should be string");
}

var transport = ajax.create();
transport.open("GET", url, true);

transport.onreadystatechange = function () {
if (transport.readyState == 4) {
requestComplete(transport, options);

}
};

transport.send();
}

ajax.get = get;
}());

In order to avoid having the ajax.get method encompass everything but
the kitchen sink, handling the completed request was extracted into a separate
function. This forced the anonymous closure around the implementation, keeping
the helper function local. Finally, with an enclosing scope we could “import” the
tddjs.ajax namespace locally here, too. Wow, that was quite a bit of work. Tests
were run in between each operation, I promise. The important thing is that the tests
all run with this implementation.

You may wonder why we extracted requestComplete and not the whole
ready state handler. In order to allow the handler access to the options object,
we would have had to either bind the handler to it or call the function from inside
an anonymous function assigned to onreadystatechange. In either case we
would have ended up with two function calls rather than one in browsers without a
native bind implementation. For requests incurring a large response, the handler
will be called many times (with readyState 3), and the duplicated function calls
would have added unnecessary overhead.

Now then, what do you suppose would happen if the readystatechange
handler is called and we didn’t provide a success callback? Listing 12.35 intends to
find out.

 From the Library of WoweBook.Com

ptg

268 Abstracting Browser Differences: Ajax

Listing 12.35 Coping with successful requests and no callback

"test should not throw error without success handler":
function () {

this.xhr.readyState = 4;
this.xhr.status = 200;

ajax.get("/url");

assertNoException(function () {
this.xhr.onreadystatechange();

}.bind(this));
}

Because we now need to access this.xhr inside the callback to assert-

NoException, we bind the callback. For this to work reliably across browsers,
save theFunction.prototype.bind implementation from Chapter 6, Applied
Functions and Closures, in lib/function.js.

As expected, this test fails. ajax.get blindly assumes both an options object
and the success callback. To pass this test we need to make the code more defensive,
as in Listing 12.36.

Listing 12.36 Taking care with optional arguments

function requestComplete(transport, options) {
if (transport.status == 200) {
if (typeof options.success == "function") {

options.success(transport);
}

}
}

function get(url, options) {
/* ... */
options = options || {};
var transport = ajax.create();
/* ... */

};

With this safety net in place, the test passes. The success handler does not need
to verify the existence of the options argument. As an internal function we have
absolute control over how it is called, and the conditional assignment in ajax.get
guarantees it is not null or undefined.

 From the Library of WoweBook.Com

ptg

12.5 Using the Ajax API 269

12.5 Using the Ajax API
As crude as it is, tddjs.ajax.get is now complete enough that we expect it to
be functional. We have built it step-by-step in small iterations from the ground up,
and have covered the basic happy path. It’s time to take it for a spin, to verify that
it actually runs in the real world.

12.5.1 The Integration Test
To use the API we need an HTML page to host the test. The test page will make a sim-
ple request for another HTML page and add the results to the DOM. The test page
can be viewed in Listing 12.37 with the test script, successful_get_test.js,
following in Listing 12.38.

Listing 12.37 Test HTML document

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html lang="en">
<head>

<meta http-equiv="content-type"
content="text/html; charset=utf-8">

<title>Ajax Test</title>
</head>
<body onload="startSuccessfulGetTest()">

<h1>Ajax Test</h1>
<div id="output"></div>
<script type="text/javascript"

src="../lib/tdd.js"></script>
<script type="text/javascript"

src="../src/ajax.js"></script>
<script type="text/javascript"

src="../src/request.js"></script>
<script type="text/javascript"

src="successful_get_test.js"></script>
</body>

</html>

Listing 12.38 The integration test script

function startSuccessfulGetTest() {
var output = document.getElementById("output");

if (!output) {
return;

}

 From the Library of WoweBook.Com

ptg

270 Abstracting Browser Differences: Ajax

function log(text) {
if (output && typeof output.innerHTML != "undefined") {

output.innerHTML += text;
} else {

document.write(text);
}

}

try {
if (tddjs.ajax && tddjs.get) {

var id = new Date().getTime();

tddjs.ajax.get("fragment.html?id=" + id, {
success: function (xhr) {
log(xhr.responseText);

}
});

} else {
log("Browser does not support tddjs.ajax.get");

}
} catch (e) {
log("An exception occured: " + e.message);

}
}

As you can see from the test script’s log function, I intend to run the tests in
some ancient browsers. The fragment being requested can be seen in Listing 12.39.

Listing 12.39 HTML fragment to be loaded asynchronously

<h1>Remote page</h1>
<p>
Hello, I am an HTML fragment and I was fetched
using <code>XMLHttpRequest</code>

</p>

12.5.2 Test Results
Running the tests is mostly a pleasurable experience even though it does teach
us a few things about the code. Perhaps most surprisingly, the test is unsuccess-
ful in Firefox up until version 3.0.x. Even though the Mozilla Developer Center
documentation states that send takes an optional body argument, Firefox 3.0.x
and previous versions will in fact throw an exception if send is called without an
argument.

 From the Library of WoweBook.Com

ptg

12.5 Using the Ajax API 271

Having discovered a deficiency in the wild, our immediate reaction as TDD-ers
is to capture it in a test. Capturing the bug by verifying that our code handles the
exception is all fine, but does not help Firefox <= 3.0.x get the request through. A
better solution is to assert that send is called with an argument. Seeing that GET
requests never have a request body, we simply pass it null. The test goes in the
GetRequestTest test case and can be seen in Listing 12.40.

Listing 12.40 Asserting that send is called with an argument

"test should pass null as argument to send": function () {
ajax.get("/url");

assertNull(this.xhr.send.args[0]);
}

The test fails, so Listing 12.41 updates ajax.get to pass null directly to
send.

Listing 12.41 Passing null to send

function get(url, options) {
/* ... */
transport.send(null);

}

Our tests are back to a healthy green, and now the integration test runs
smoothly on Firefox as well. In fact, it now runs on all Firefox versions, includ-
ing back when it was called Firebird (0.7). Other browsers cope fine too, for in-
stance Internet Explorer versions 5 and up run the test successfully. The code
was tested on a wide variety of new and old browsers. All of them either com-
pleted the test successfully or gracefully printed that “Browser does not support
tddjs.ajax.get.”

12.5.3 Subtle Trouble Ahead
There is one more problem with the code as is, if not as obvious as the pre-
vious obstacle. The XMLHttpRequest object and the function assigned to its
onreadystatechange property creates a circular reference that causes mem-
ory leaks in Internet Explorer. To see this in effect, create another test page like
the previous one, only make 1,000 requests. Watch Internet Explorer’s memory
usage in the Windows task manager. It should skyrocket, and what’s worse is that

 From the Library of WoweBook.Com

ptg

272 Abstracting Browser Differences: Ajax

it will stay high even when you leave the page. This is a serious problem, but one
that is luckily easy to fix; simply break the circular reference either by removing the
onreadystatechange handler or null the request object (thus removing it from
the handler’s scope) once the request is finished.

We will use the test case to ensure that this issue is handled. Although nulling
the transport is simple, we cannot test it, because it’s a local value. We’ll clear the
ready state handler instead.

Clearing the handler can be done in a few ways; setting it to null or using the
delete operator quickly comes to mind. Enter our old friend Internet Explorer.
Using delete will not work in IE; it returns false, indicating that the property
was not successfully deleted. Setting the property to null (or any non-function
value) throws an exception. The solution is to set the property to a function that
does not include the request object in its scope. We can achieve this by creating
a tddjs.noop function that is known to have a “clean” scope chain. Using a
function available outside the implementation handily lends itself to testing as well,
as Listing 12.42 shows.

Listing 12.42 Asserting that the circular reference is broken

"test should reset onreadystatechange when complete":
function () {
this.xhr.readyState = 4;
ajax.get("/url");

this.xhr.onreadystatechange();

assertSame(tddjs.noop, this.xhr.onreadystatechange);
}

As expected, this test fails. Implementing it is as simple as Listing 12.43.

Listing 12.43 Breaking the circular reference

tddjs.noop = function () {};

(function () {
/* ... */

function get(url, options) {
/* ... */

transport.onreadystatechange = function () {
if (transport.readyState == 4) {

 From the Library of WoweBook.Com

ptg

12.5 Using the Ajax API 273

requestComplete(transport, options);
transport.onreadystatechange = tddjs.noop;

}
};

transport.send(null);
};

/* ... */
}());

Adding these two lines makes the tests pass again. Re-running the massive re-
quest integration test in Internet Explorer confirms that the memory leak is now
gone.

12.5.4 Local Requests
The last issue with the current implementation is that it is unable to make local
requests. Doing so results in no errors, yet “nothing happens.” The reason for this
is that the local file system has no concept of HTTP status codes, so the status code
is 0 when readyState is 4. Currently our implementation only accepts status
code 200, which is insufficient in any case. We will add support for local requests
by checking if the script is running locally and that the status code is not set, as the
test in Listing 12.44 shows.

Listing 12.44 Making sure the success handler is called for local requests

"test should call success handler for local requests":
function () {

this.xhr.readyState = 4;
this.xhr.status = 0;
var success = stubFn();
tddjs.isLocal = stubFn(true);

ajax.get("file.html", { success: success });
this.xhr.onreadystatechange();

assert(success.called);
}

The test assumes a helper method tddjs.isLocal to check if the script is
running locally. Because we are stubbing it, a reference to it is saved in the setUp,
allowing it to be restored in tearDown as we did before.

 From the Library of WoweBook.Com

ptg

274 Abstracting Browser Differences: Ajax

To pass the test, we will call the success callback whenever the request is for a
local file and the status code is not set. Listing 12.45 shows the updated ready state
change handler.

Listing 12.45 Allow local requests to succeed

function requestComplete(transport, options) {
var status = transport.status;

if (status == 200 || (tddjs.isLocal() && !status)) {
if (typeof options.success == "function") {

options.success(transport);
}

}
}

The implementation passes the test. In order to have this working in a browser
as well, we need to implement the helper that determines if the script is running
locally, as seen in Listing 12.46. Add it to the lib/tdd.js file.

Listing 12.46 Checking current URL to decide if request is local

tddjs.isLocal = (function () {
function isLocal() {
return !!(window.location &&

window.location.protocol.indexOf("file:") === 0);
}

return isLocal;
}());

With this helper in place we can re-run the integration test locally, and observe
that it now loads the HTML fragment.

12.5.5 Testing Statuses
We finished another step—a test and a few lines of production code—it’s time to
review and look for duplication. Even with the stub helpers we added previously,
the tests that verify behavior for different sets of readyState and status codes
look awfully similar. And still we haven’t tested for other 2xx status codes, or any
error codes at all.

To reduce the duplication, we will add a method to the fakeXMLHttp-

Request object that allows us to fake its ready state changing. Listing 12.47 adds a
method that changes the ready state and calls theonreadystatechangehandler.

 From the Library of WoweBook.Com

ptg

12.5 Using the Ajax API 275

Listing 12.47 Completing the fake request

var fakeXMLHttpRequest = {
open: stubFn(),
send: stubFn(),

readyStateChange: function (readyState) {
this.readyState = readyState;
this.onreadystatechange();

}
};

Using this method, we can extract a helper method that accepts as arguments
a status code and a ready state, and returns an object with properties success
and failure, both indicating if the corresponding callback was called. This is a
bit of a leap because we haven’t yet written any tests for the failure callback, but in
order to move along we will make a run for it. Listing 12.48 shows the new helper
function.

Listing 12.48 Request helper for tests

function forceStatusAndReadyState(xhr, status, rs) {
var success = stubFn();
var failure = stubFn();

ajax.get("/url", {
success: success,
failure: failure

});

xhr.status = status;
xhr.readyStateChange(rs);

return {
success: success.called,
failure: failure.called

};
}

Because this abstracts the whole body of a few tests, it was given a fairly verbose
name so as to not take away from the clarity of the tests. You’ll be the judge of
whether the tests are now too abstract or still clear. Listing 12.49 shows the helper
in use.

 From the Library of WoweBook.Com

ptg

276 Abstracting Browser Differences: Ajax

Listing 12.49 Using the request helper in tests

"test should call success handler for status 200":
function () {
var request = forceStatusAndReadyState(this.xhr, 200, 4);

assert(request.success);
},

/* ... */

"test should call success handler for local requests":
function () {
tddjs.isLocal = stubFn(true);

var request = forceStatusAndReadyState(this.xhr, 0, 4);

assert(request.success);
}

When making big changes like this I like to introduce a few intentional bugs
in the helper to make sure it’s working as I expect. For instance, we could com-
ment out the line that sets the success handler in the helper to verify that the test
then fails. Also, the second test should fail if we comment out the line that stubs
tddjs.isLocal to return true, which it does. Manipulating the ready state and
status code is also a good way to ensure tests still behave as expected.

12.5.5.1 Further Status Code Tests

Using the new helper makes testing for new status codes a trivial task, so I will leave
it as an exercise. Although testing for more status codes and making sure the failure
callback is fired for status codes outside the 200 range (with the exception of 0 for
local files and 304 “Not Modified”) is a good exercise in test-driven development,
doing so will add little new to our discussion. I urge you to run through the steps as
an exercise, and when you are done you could always compare your quest to mine
by downloading the sample code off the book’s website2.

2. http://tddjs.com

 From the Library of WoweBook.Com

http://tddjs.com

ptg

12.6 Making POST Requests 277

Listing 12.50 shows the resulting handler.

Listing 12.50 Dispatching success and failure callbacks

function isSuccess(transport) {
var status = transport.status;

return (status >= 200 && status < 300) ||
status == 304 ||
(tddjs.isLocal() && !status);

}

function requestComplete(transport, options) {
if (isSuccess(transport)) {
if (typeof options.success == "function") {

options.success(transport);
}

} else {
if (typeof options.failure == "function") {

options.failure(transport);
}

}
}

12.6 Making POST Requests
With the GET requests in a fairly usable state we will move on to the subject of
POST requests. Note that there is still a lot missing from the GET implementation,
such as setting request headers and exposing the transport’s abort method. Don’t
worry, test-driven development is all about incrementally building an API, and given
a list of requirements to meet we can choose freely which ones makes sense to work
on at any given time. Implementing POST requests will bring about an interesting
refactoring, which is the motivation for doing this now.

12.6.1 Making Room for Posts
The current implementation does not lend itself easily to support new HTTP verbs.
We could pass the method as an option, but where? To the ajax.get method?
That wouldn’t make much sense. We need to refactor the existing implementation
in three ways: First we need to extract a generic ajax.request method; then
we need to make the HTTP verb configurable. Last, to remove duplication we will

 From the Library of WoweBook.Com

ptg

278 Abstracting Browser Differences: Ajax

“nuke” the body of the ajax.get method, leaving it to delegate its work to
ajax.request, forcing a GET request.

12.6.1.1 Extracting ajax.request

Extracting the new method isn’t magic; simply copy-paste ajax.get and rename
it, as seen in Listing 12.51.

Listing 12.51 Copy-pasting ajax.get to ajax.request

function request(url, options) {
// Copy of original ajax.get function body

}

ajax.request = request;

Remember to run the tests after each step while refactoring. In this case, only a
copy-paste mistake resulting in a syntax error could possibly break the code because
the new method isn’t being called yet.

12.6.1.2 Making the Method Configurable

Next up is to make the request method a configurable option on the ajax.

request method. This is new functionality and so requires a test, as seen in
Listing 12.52.

Listing 12.52 Request method should be configurable

function setUp() {
this.tddjsIsLocal = tddjs.isLocal;
this.ajaxCreate = ajax.create;
this.xhr = Object.create(fakeXMLHttpRequest);
ajax.create = stubFn(this.xhr);

}

function tearDown() {
tddjs.isLocal = this.tddjsIsLocal;
ajax.create = this.ajaxCreate;

}

TestCase("GetRequestTest", {
setUp: setUp,
tearDown: tearDown,
/* ... */

});

 From the Library of WoweBook.Com

ptg

12.6 Making POST Requests 279

TestCase("ReadyStateHandlerTest", {
setUp: setUp,
tearDown: tearDown,
/* ... */

});

TestCase("RequestTest", {
setUp: setUp,
tearDown: tearDown,

"test should use specified request method": function () {
ajax.request("/uri", { method: "POST" });

assertEquals("POST", this.xhr.open.args[0]);
}

});

We add a new test case for the ajax.requestmethod. This makes three test
cases using the same setup and teardown methods, so we extract them as functions
inside the anonymous closure to share them across test cases.

The test asserts that the request method uses POST as the request method
when specified to do so. The choice of method is not coincidental. When TDD-
ing, we should always add tests that we expect to fail somehow, tests that signify
progress. Using POST also forces us to produce a real solution, as hard-coding
POST would make one of the other tests fail. This is another quality mark of a unit
test suite; breaking fundamental behavior in production code only results in one (or
a few) breaking tests. This indicates tests are distinct and don’t retest already tested
behavior.

Onwards to a solution. Listing 12.53 shows how ajax.request could make
the request method a configuration option.

Listing 12.53 Making the method configurable

function request(url, options) {
/* ... */
transport.open(options.method || "GET", url, true);
/* ... */

}

That’s really all there is to it. Tests are passing.

 From the Library of WoweBook.Com

ptg

280 Abstracting Browser Differences: Ajax

12.6.1.3 Updating ajax.get

Now to the actual refactoring. ajax.request now does the same job as
ajax.get, only slightly more flexible. This means that all ajax.get really needs
to do is to make sure the method used is GET and let ajax.request do all the
work. Listing 12.54 shows the spiffy new ajax.get.

Listing 12.54 Cropping ajax.get’s body

function get(url, options) {
options = tddjs.extend({}, options);
options.method = "GET";
ajax.request(url, options);

}

As we are now overriding the method option, we use the tddjs.extend
method from Chapter 7, Objects and Prototypal Inheritance, to make a copy of the
options object before making changes to it. Running the tests confirms that this
works as expected, and voila, we have a foundation for the post method.

Now that the interface changed, our tests are in need of some maintenance. Most
tests now targetajax.getwhile actually testing the internals ofajax.request.
As we discussed as early as in Chapter 1, Automated Testing, voila, this kind of
indirection in tests is generally not appreciated. Unit tests need maintenance as
much as production code, and the key to avoiding that becoming a problem is
dealing with these cases as they arise. In other words, we should update our test
cases immediately.

Fortunately, housekeeping is simple at this point. All the tests except “should
define get method” can be moved from GetRequestTest to RequestTest. The only
modification we need to make is to change all calls to get to request directly.
The tests for the ready state change handler already have their own test case, Ready-
StateHandlerTest. In this case we only need to update the method calls from get

to request. This includes the call inside the forceStatusAndReadyState
helper.

Moving tests, changing method calls, and re-running the tests takes about half
a minute, no big deal. In more complex situations, such changes may be more
involved, and in those cases some folks feel it’s a good idea to employ more test
helpers to avoid coupling the tests too tightly to the interface being tested. I think
this practice takes away some of the value of tests as documentation, and I use it
sparingly.

 From the Library of WoweBook.Com

ptg

12.6 Making POST Requests 281

12.6.1.4 Introducing ajax.post

With ajax.request in place, implementing POST requests should be a breeze.
Feeling brave, we skip the simple test to prove the method’s existence this time
around. Instead, the test in Listing 12.55 shows how we expect the method to
behave.

Listing 12.55 Expecting ajax.post to delegate to ajax.request

TestCase("PostRequestTest", {
setUp: function () {

this.ajaxRequest = ajax.request;
},

tearDown: function () {
ajax.request = this.ajaxRequest;

},

"test should call request with POST method": function () {
ajax.request = stubFn();

ajax.post("/url");

assertEquals("POST", ajax.request.args[1].method);
}

});

Implementation is trivial, as seen in Listing 12.56.

Listing 12.56 Delegating ajax.post to ajax.request with POST as method

function post(url, options) {
options = tddjs.extend({}, options);
options.method = "POST";
ajax.request(url, options);

}

ajax.post = post;

Running the tests confirms that this implementation solves the newly added
requirement. As always, we look for duplication before moving on. Obviously, the
get and post methods are very similar. We could extract a helper method, but
saving only two lines in two methods at the expense of another function call and
another level of indirection doesn’t seem worthwhile at this point. You may feel
differently.

 From the Library of WoweBook.Com

ptg

282 Abstracting Browser Differences: Ajax

12.6.2 Sending Data
In order for the POST request to make any sense, we need to send data with it.
To send data to the server the same way a browser posts a form we need to do
two things: encode the data using either encodeURI or encodeURIComponent
(depending on how we receive the data) and set the Content-Type header. We will
start with the data.

Before we head into the request test case to formulate a test that expects encoded
data, let’s take a step back and consider what we are doing. Encoding strings isn’t a
task unique to server requests; it could be useful in other cases as well. This insight
points in the direction of separating string encoding into its own interface. I won’t
go through the steps required to build such an interface here; instead Listing 12.57
shows a very simple implementation.

Listing 12.57 Simplified url parameter encoder

(function () {
if (typeof encodeURIComponent == "undefined") {
return;

}

function urlParams(object) {
if (!object) {

return "";
}

if (typeof object == "string") {
return encodeURI(object);

}

var pieces = [];

tddjs.each(object, function (prop, val) {
pieces.push(encodeURIComponent(prop) + "=" +

encodeURIComponent(val));
});

return pieces.join("&");
}

tddjs.namespace("util").urlParams = urlParams;
}());

 From the Library of WoweBook.Com

ptg

12.6 Making POST Requests 283

Obviously, this method could be extended to properly encode arrays and other
kinds of data as well. Because the encodeURIComponent function isn’t guaran-
teed to be available, feature detection is used to conditionally define the method.

12.6.2.1 Encoding Data in ajax.request

For post requests, data should be encoded and passed as an argument to the send
method. Let’s start by writing a test that ensures data is encoded, as in Listing 12.58.

Listing 12.58 Asserting data sent to post

function setUp() {
this.tddjsUrlParams = tddjs.util.urlParams;
/* ... */

}

function tearDown() {
tddjs.util.urlParams = this.tddjsUrlParams;
/* ... */

}

TestCase("RequestTest", {
/* ... */

"test should encode data": function () {
tddjs.util.urlParams = stubFn();
var object = { field1: "13", field2: "Lots of data!" };

ajax.request("/url", { data: object, method: "POST" });

assertSame(object, tddjs.util.urlParams.args[0]);
}

});

Making this test pass isn’t so hard, as Listing 12.59 shows.

Listing 12.59 Encoding data if any is available

function request(url, options) {
/* ... */
options = tddjs.extend({}, options);
options.data = tddjs.util.urlParams(options.data);
/* ... */

}

 From the Library of WoweBook.Com

ptg

284 Abstracting Browser Differences: Ajax

We don’t need to check if data exists because urlParams was designed to
handle a missing argument. Note that because the encoding interface was separated
from the ajax interface, it would probably be a good idea to add a feature test for it.
We could force such a feature test by writing a test that removed the method locally
for the duration of the test and assert that the method did not throw an exception.
I’ll leave that as an exercise.

12.6.2.2 Sending Encoded Data

Next up is sending the data. For POST requests we want the data sent to send, as
Listing 12.60 specifies.

Listing 12.60 Expecting data to be sent for POST requests

"test should send data with send() for POST": function () {
var object = { field1: "$13", field2: "Lots of data!" };
var expected = tddjs.util.urlParams(object);

ajax.request("/url", { data: object, method: "POST" });

assertEquals(expected, this.xhr.send.args[0]);
}

This test fails because we are force-feeding the send method null. Also note
how we now trust tddjs.util.urlParams to provide the expected value. It
should have its own set of tests, which should guarantee as much. If we are reluctant
to trust it, we could stub it out to avoid it cluttering up the test. Some developers
always stub or mock out dependencies such as this, and theoretically, not doing so
makes the unit test slightly bend toward an integration test. We will discuss pros and
cons of different levels of stubbing and mocking more extensively in Chapter 16,
Mocking and Stubbing. For now, we will leave tddjs.util.urlParams live in
our tests.

To make the test pass we need to add data handling to ajax.request, as
Listing 12.61 does.

Listing 12.61 Initial attempt at handling data

function request(url, options) {
/* ... */
options = tddjs.extend({}, options);
options.data = tddjs.util.urlParams(options.data);
var data = null;

 From the Library of WoweBook.Com

ptg

12.6 Making POST Requests 285

if (options.method == "POST") {
data = options.data;

}

/* ... */

transport.send(data);
};

This is not optimal, but passes the test without failing the previous one that
expects send to receive null. One way to clean up the ajax.request method
is to refactor to extract the data handling, as Listing 12.62 shows.

Listing 12.62 Extracting a data handling function

function setData(options) {
if (options.method == "POST") {

options.data = tddjs.util.urlParams(options.data);
} else {

options.data = null;
}

}

function request(url, options) {
/* ... */
options = tddjs.extend({}, options);
setData(options);

/* ... */

transport.send(options.data);
};

This somewhat obtrusively blanks data for GET requests, so we will deal with
that immediately.

12.6.2.3 Sending Data with GET Requests

Before we can move on to setting request headers we must make sure that it is
possible to send data with GET requests as well. With GET, data is not passed
to the send method, but rather encoded on the URL. Listing 12.63 shows a test
specifying the behavior.

 From the Library of WoweBook.Com

ptg

286 Abstracting Browser Differences: Ajax

Listing 12.63 Testing that GET requests can send data

"test should send data on URL for GET": function () {
var url = "/url";
var object = { field1: "$13", field2: "Lots of data!" };
var expected = url + "?" + tddjs.util.urlParams(object);

ajax.request(url, { data: object, method: "GET" });

assertEquals(expected, this.xhr.open.args[1]);
}

With this test in place we need to modify the data processing. For both GET
and POST requests we need to encode data, but for GET requests the data goes on
the URL, and we must remember to still pass null to the send method.

At this point we have enough requirements to make keeping them all in
our heads a confusing affair. Tests are slowly becoming a fantastic asset; because
we don’t need to worry about requirements we have already met, we can code
along without being weighed down by ever-growing amounts of requirements. The
implementation can be seen in Listing 12.64.

Listing 12.64 Adding data to get requests

function setData(options) {
if (options.data) {
options.data = tddjs.util.urlParams(options.data);

if (options.method == "GET") {
options.url += "?" + options.data;
options.data = null;

}
} else {
options.data = null;

}
}

function request(url, options) {
/* ... */
options = tddjs.extend({}, options);
options.url = url;
setData(options);
/* ... */

transport.open(options.method || "GET", options.url, true);

 From the Library of WoweBook.Com

ptg

12.6 Making POST Requests 287

/* ... */
transport.send(options.data);

};

Because the data handling might include modifying the URL to embed data
onto it, we added it to the options object and passed that to setData, as before.
Obviously, the above solution will break down if the URL already has query param-
eters on it. As an exercise, I urge you to test for such a URL and update setData
as necessary.

12.6.3 Setting Request Headers
The last thing we need to do in order to pass data is setting request headers. Head-
ers can be set using the setRequestHeader(name, value) method. At this
point adding in header handling is pretty straightforward, so I will leave doing
that as an exercise. To test this you will need to augment the fakeXMLHttp-

Request object to record headers set on it so you can inspect them from your
tests. Listing 12.65 shows an updated version of the object you can use for this
purpose.

Listing 12.65 Adding a fake setRequestHeader method

var fakeXMLHttpRequest = {
open: stubFn(),
send: stubFn(),

setRequestHeader: function (header, value) {
if (!this.headers) {
this.headers = {};

}

this.headers[header] = value;
},

readyStateChange: function (readyState) {
this.readyState = readyState;
this.onreadystatechange();

}
};

 From the Library of WoweBook.Com

ptg

288 Abstracting Browser Differences: Ajax

12.7 Reviewing the Request API
Even though we didn’t walk through setting request headers, I want to show you
the resulting ajax.request after implementing header handling (this is but one
possible solution). The full implementation can be seen in Listing 12.66.

Listing 12.66 The “final” version of tddjs.ajax.request

tddjs.noop = function () {};

(function () {
var ajax = tddjs.namespace("ajax");

if (!ajax.create) {
return;

}

function isSuccess(transport) {
var status = transport.status;

return (status >= 200 && status < 300) ||
status == 304 ||
(tddjs.isLocal() && !status);

}

function requestComplete(options) {
var transport = options.transport;

if (isSuccess(transport)) {
if (typeof options.success == "function") {
options.success(transport);

}
} else {
if (typeof options.failure == "function") {
options.failure(transport);

}
}

}

function setData(options) {
if (options.data) {
options.data = tddjs.util.urlParams(options.data);

if (options.method == "GET") {
var hasParams = options.url.indexOf("?") >= 0;
options.url += hasParams ? "&" : "?";

 From the Library of WoweBook.Com

ptg

12.7 Reviewing the Request API 289

options.url += options.data;
options.data = null;

}
} else {

options.data = null;
}

}

function defaultHeader(transport, headers, header, val) {
if (!headers[header]) {

transport.setRequestHeader(header, val);
}

}

function setHeaders(options) {
var headers = options.headers || {};
var transport = options.transport;

tddjs.each(headers, function (header, value) {
transport.setRequestHeader(header, value);

});

if (options.method == "POST" && options.data) {
defaultHeader(transport, headers,

"Content-Type",
"application/x-www-form-urlencoded");

defaultHeader(transport, headers,
"Content-Length", options.data.length);

}

defaultHeader(transport, headers,
"X-Requested-With", "XMLHttpRequest");

}

// Public methods

function request(url, options) {
if (typeof url != "string") {

throw new TypeError("URL should be string");
}

options = tddjs.extend({}, options);
options.url = url;
setData(options);

 From the Library of WoweBook.Com

ptg

290 Abstracting Browser Differences: Ajax

var transport = tddjs.ajax.create();
options.transport = transport;
transport.open(options.method || "GET", options.url, true);
setHeaders(options);

transport.onreadystatechange = function () {
if (transport.readyState == 4) {
requestComplete(options);
transport.onreadystatechange = tddjs.noop;

}
};

transport.send(options.data);
}

ajax.request = request;

function get(url, options) {
options = tddjs.extend({}, options);
options.method = "GET";
ajax.request(url, options);

}

ajax.get = get;

function post(url, options) {
options = tddjs.extend({}, options);
options.method = "POST";
ajax.request(url, options);

}

ajax.post = post;
}());

The ajax namespace now contains enough functionality to serve most uses
of asynchronous communication, although it is far from complete. Reviewing the
implementation so far seems to suggest that refactoring to extract a request ob-
ject as the baseline interface would be a good idea. Peeking through the code in
Listing 12.66, we can spot several helpers that accept an options object. I’d sug-
gest that this object in fact represents the state of the request, and might as well have
been dubbed request at this point. In doing so, we could move the logic around,
making the helpers methods of the request object instead. Following this train of
thought possibly could lead our ajax.get and ajax.post implementations to
look something like Listing 12.67.

 From the Library of WoweBook.Com

ptg

12.7 Reviewing the Request API 291

Listing 12.67 Possible direction of the request API

(function () {
/* ... */

function setRequestOptions(request, options) {
options = tddjs.extend({}, options);
request.success = options.success;
request.failure = options.failure;
request.headers(options.headers || {});
request.data(options.data);

}

function get(url, options) {
var request = ajax.request.create(ajax.create());
setRequestOptions(request, options);
request.method("GET");

request.send(url);
};

ajax.get = get;

function post(url, options) {
var request = ajax.request.create(ajax.create());
setRequestOptions(request, options);
request.method("POST");

request.send(url);
};

ajax.post = post;
}());

Here the request.create takes a transport as its only argument, meaning
that we provide it with its main dependency rather than having it retrieve the object
itself. Furthermore, the method now returns a request object that can be sent when
configured. This brings the base API closer to the XMLHttpRequest object it’s
wrapping, but still contains logic to set default headers, pre-process data, even out
browser inconsistencies, and so on. Such an object could easily be extended in order
to create more specific requesters as well, such as a JSONRequest. That object
could pre-process the response as well, by for instance passing readily parsed JSON
to callbacks.

 From the Library of WoweBook.Com

ptg

292 Abstracting Browser Differences: Ajax

The test cases (or test suite if you will) built in this chapter provide some insight
into the kind of tests TDD leaves you with. Even with close to 100% code coverage
(every line of code is executed by the tests), we have several holes in tests; more tests
for cases when things go wrong—methods receive the wrong kind of arguments, and
other edge cases are needed. Even so, the tests document our entire API, provides
decent coverage, and makes for an excellent start in regards to a more solid test suite.

12.8 Summary
In this chapter we have used tests as our driver in developing a higher level API
for the XMLHttpRequest object. The API deals with certain cross-browser is-
sues, such as differing object creation, memory leaks, and buggy send methods.
Whenever a bug was uncovered, tests were written to ensure that the API deals
with the issue at hand.

This chapter also introduced extensive use of stubbing. Even though we saw
how stubbing functions and objects could easily be done manually, we quickly
realized that doing so leads to too much duplication. The duplication prompted us
to write a simple function that helps with stubbing. We will pick up on this idea
in Chapter 16, Mocking and Stubbing, and solve the case we didn’t solve in this
chapter; stubbing functions that will be called multiple times.

Coding through tddjs.ajax.request and friends, we have refactored
both production code and tests aggressively. Refactoring is perhaps the most valu-
able tool when it comes to producing clean code and removing duplication. By
frequently refactoring the implementation, we avoid getting stuck trying to come
up with the greatest design at any given time—we can always improve it later,
when we understand the problem better. As food for thought, we rounded off by
discussing a refactoring idea to further improve the API.

The end result of the coding exercise in this chapter is a usable, yet hardly
complete, “ajax” API. We will use this in the next chapter, when we build an
interface to poll the server and stream data.

 From the Library of WoweBook.Com

ptg

13Streaming Data with Ajax
and Comet

In Chapter 12, Abstracting Browser Differences: Ajax, we saw how the XML-

HttpRequest object enables web pages to take the role of interactive applications
that can both update data on the back-end server by issuing POST requests, as well
as incrementally update the page without reloading it using GET requests.

In this chapter we will take a look at technologies used to implement live
data streaming between the server and client. This concept was first enabled by
Netscape’s Server Push in 1995, and is possible to implement in a variety of ways
in today’s browsers under umbrella terms such as Comet, Reverse Ajax, and Ajax
Push. We will look into two implementations in this chapter; regular polling and
so-called long polling.

This chapter will add some features to the tddjs.ajax.request interface
developed in the previous chapter, add a new interface, and finally integrate with
tddjs.util.observable, developed in Chapter 11, The Observer Pattern,
enabling us to create a streaming data client that allows JavaScript objects to observe
server-side events.

The goal of this exercise is twofold: learning more about models for client-
server interaction, and of course test-driven development. Important TDD lessons
in this chapter includes delving deeper into testing asynchronous interfaces and
testing timers. We will continue our discussion of stubbing, and get a glimpse of the
workflow and choices presented to us as we develop more than a single interface.

293

 From the Library of WoweBook.Com

ptg

294 Streaming Data with Ajax and Comet

13.1 Polling for Data
Although one-off requests to the server can enable highly dynamic and interesting
applications, it doesn’t open up for real live applications. Applications such as
Facebook’s and GTalk’s in-browser chats are examples of applications that cannot
make sense without a constant data stream. Other features, such as stock tickers,
auctions, and Twitter’s web interface become significantly more useful with a live
data stream.

The simplest way to keep a constant data stream to the client is to poll the
server on some fixed interval. Polling is as simple as issuing a new request every so
many milliseconds. The shorter delay between requests, the more live the applica-
tion. We will discuss some ups and downs with polling later, but in order for that
discussion to be code-driven we will jump right into test driving development of a
poller.

13.1.1 Project Layout
As usual we will use JsTestDriver to run tests. The initial project layout can be seen
in Listing 13.1 and is available for download from the book’s website.1

Listing 13.1 Directory layout for the poller project

chris@laptop:~/projects/poller $ tree
.
|-- jsTestDriver.conf
|-- lib
| `-- ajax.js
| `-- fake_xhr.js
| `-- function.js
| `-- object.js
| `-- stub.js
| `-- tdd.js
| `-- url_params.js
|-- src
| `-- poller.js
| `-- request.js
`-- test

`-- poller_test.js
`-- request_test.js

1. http://tddjs.com

 From the Library of WoweBook.Com

http://tddjs.com

ptg

13.1 Polling for Data 295

In many ways this project is a continuation of the previous one. Most files can be
recognized from the previous chapter. The request.js file, and its test case are
brought along for further development, and we will add some functionality to them.
Note that the final refactoring discussed in Chapter 12, Abstracting Browser Differ-
ences: Ajax, in which tdd.ajax.request returns an object representing the re-
quest, is not implemented. Doing so would probably be a good idea, but we’ll try not
to tie the two interfaces too tightly together, allowing the refactoring to be performed
at some later time. Sticking with the code exactly as we developed it in the previous
chapter will avoid any surprises, allowing us to focus entirely on new features.

The jsTestDriver.conf configuration file needs a slight tweak for this
project. The lib directory now contains an ajax.js file that depends on the
tddjs object defined in tdd.js; however, it will be loaded before the file it
depends on. The solution is to manually specify the tdd.js file first, then load the
remaining lib files, as seen in Listing 13.2.

Listing 13.2 Ensuring correct load order of test files

server: http://localhost:4224

load:
- lib/tdd.js
- lib/stub.js
- lib/*.js
- src/*.js
- test/*.js

13.1.2 The Poller: tddjs.ajax.poller
In Chapter 12, Abstracting Browser Differences: Ajax, we built the request interface
by focusing heavily on the simplest use case, calling tddjs.ajax.get or
tddjs.ajax.post to make one-off GET or POST requests. In this chapter we
are going to flip things around and focus our efforts on building a stateful object,
such as the one we realized could be refactored from tddjs.ajax.request.
This will show us a different way to work, and, because test-driven development
really is about design and specification, a slightly different result. Once the object
is useful we will implement a cute one-liner interface on top of it to go along with
the get and post methods.

 From the Library of WoweBook.Com

ptg

296 Streaming Data with Ajax and Comet

13.1.2.1 Defining the Object

The first thing we expect from the interface is simply that it exists, as Listing 13.3
shows.

Listing 13.3 Expecting tddjs.ajax.poller to be an object

(function () {
var ajax = tddjs.ajax;

TestCase("PollerTest", {
"test should be object": function () {

assertObject(ajax.poller);
}

});
}());

This test jumps the gun on a few details; we know that we are going to want to
shorten the full namespace, and doing so requires the anonymous closure to avoid
leaking the shortcut into the global namespace. Implementation is a simple matter
of defining an object, as seen in Listing 13.4.

Listing 13.4 Defining tddjs.ajax.poller

(function () {
var ajax = tddjs.namespace("ajax");

ajax.poller = {};
}());

The same initial setup (anonymous closure, local alias for namespace) is done
here as well. Our first test passes.

13.1.2.2 Start Polling

The bulk of the poller’s work is already covered by the request object, so it is simply
going to organize issuing requests periodically. The only extra option the poller
needs is the interval length in milliseconds.

To start polling, the object should offer a startmethod. In order to make any
requests at all we will need a URL to poll, so the test in Listing 13.5 specifies that
the method should throw an exception if no url property is set.

 From the Library of WoweBook.Com

ptg

13.1 Polling for Data 297

Listing 13.5 Expecting start to throw an exception on missing URL

"test start should throw exception for missing URL":
function () {
var poller = Object.create(ajax.poller);

assertException(function () {
poller.start();

}, "TypeError");
}

As usual, we run the test before implementing it. The first run coughs up an error
stating that there is noObject.createmethod. To fix this we fetch it from Chap-
ter 7, Objects and Prototypal Inheritance, and stick it intdd.js. What happens next
is interesting; the test passes. Somehow aTypeError is thrown, yet we haven’t done
anything other than defining the object. To see what’s happening, we edit the test and
remove the assertException call, simply calling poller.start() directly
in the test. JsTestDriver should pick up the exception and tell us what’s going on.

As you might have guessed, the missing startmethod triggers a TypeError
of its own. This indicates that the test isn’t good enough. To improve the situation we
add another test stating that there should be astartmethod, as seen in Listing 13.6.

Listing 13.6 Expecting the poller to define a start method

"test should define a start method":
function () {

assertFunction(ajax.poller.start);
}

With this test in place, we now get a failure stating that startwas expected to
be a function, but rather was undefined. The previous test still passes. We will
fix the newly added test by simply adding a start method, as in Listing 13.7.

Listing 13.7 Adding the start method

(function () {
var ajax = tddjs.namespace("ajax");

function start() {
}

ajax.poller = {
start: start

};
}());

 From the Library of WoweBook.Com

ptg

298 Streaming Data with Ajax and Comet

Running the tests again confirms that the existence test passes, but the original
test expecting an exception now fails. This is all good and leads us to the next step,
seen in Listing 13.8; throwing an exception for the missing URL.

Listing 13.8 Throwing an exception for missing URL

function start() {
if (!this.url) {
throw new TypeError("Must specify URL to poll");

}
}

Running the tests over confirms that they are successful.

13.1.2.3 Deciding the Stubbing Strategy

Once a URL is set, the start method should make its first request. At this point
we have a choice to make. We still don’t want to make actual requests to the server
in the tests, so we will continue stubbing like we did in the previous chapter. How-
ever, at this point we have a choice of where to stub. We could keep stubbing
ajax.create and have it return a fake request object, or we could hook in higher
up, stubbing the ajax.request method. Both approaches have their pros and
cons.

Some developers will always prefer stubbing and mocking as many of an inter-
face’s dependencies as possible (you might even see the term mockists used about
these developers). This approach is common in behavior-driven development. Fol-
lowing the mockist way means stubbing (or mocking, but we’ll deal with that in
Chapter 16, Mocking and Stubbing) ajax.request and possibly other non-trivial
dependencies. The advantage of the mockist approach is that it allows us to freely
decide development strategy. For instance, by stubbing all of the poller’s dependen-
cies, we could easily have built this object first and then used the stubbed calls as
starting points for tests for the request interface when we were done. This strategy
is known as top-down—in contrast to the current bottom-up strategy—and it even
allows a team to work in parallel on dependent interfaces.

The opposite approach is to stub and mock as little as possible; only fake those
dependencies that are truly inconvenient, slow, or complicated to setup and/or run
through in tests. In a dynamically typed language such as JavaScript, stubs and mocks
come with a price; because the interface of a test double cannot be enforced (e.g., by
an “implements” keyword or similar) in a practical way, there is a real possibility of
using fakes in tests that are incompatible with their production counterparts. Making
tests succeed with such fakes will guarantee the resulting code will break when faced
with the real implementation in an integration test, or worse, in production.

 From the Library of WoweBook.Com

ptg

13.1 Polling for Data 299

Whereas we had no choice of where to stub while developing ajax.request
(it only depended on the XMLHttpRequest object via the ajax.create

method), we now have the opportunity to choose if we want to stub
ajax.request

or ajax.create. We will try a slightly different approach in this chapter by
stubbing “lower.” This makes our tests mini integration tests, as discussed in
Chapter 1, Automated Testing, with the pros and cons that follow. However, as we
have just developed a reasonable test suite for ajax.request, we should be able
to trust it for the cases we covered in Chapter 12, Abstracting Browser Differences:
Ajax.

While developing the poller we will strive to fake as little as possible, but we
need to cut off the actual server requests. To do this we will simply keep using the
fakeXMLHttpRequest object from Chapter 12, Abstracting Browser Differences:
Ajax.

13.1.2.4 The First Request

To specify that the start method should start polling, we need to assert somehow
that a URL made it across to the XMLHttpRequest object. To do this we assert
that its open method was called with the expected URL, as seen in Listing 13.9.

Listing 13.9 Expecting the poller to issue a request

setUp: function () {
this.ajaxCreate = ajax.create;
this.xhr = Object.create(fakeXMLHttpRequest);
ajax.create = stubFn(this.xhr);

},

tearDown: function () {
ajax.create = this.ajaxCreate;

},

/* ... */

"test start should make XHR request with URL": function () {
var poller = Object.create(ajax.poller);
poller.url = "/url";

poller.start();

assert(this.xhr.open.called);
assertEquals(poller.url, this.xhr.open.args[1]);

}

 From the Library of WoweBook.Com

ptg

300 Streaming Data with Ajax and Comet

Again, we useObject.create to create a new fake object, assign it to a prop-
erty of the test case, and then stub ajax.create to return it. The implementation
should be straightforward, as seen in Listing 13.10.

Listing 13.10 Making a request

function start() {
if (!this.url) {
throw new TypeError("Must provide URL property");

}

ajax.request(this.url);
}

Note that the test did not specify specifically to use ajax.request. We could
have made the request any way we wanted, so long as we used the transport provided
by ajax.create. This means, for instance, that we could carry out the aforemen-
tioned refactoring on the request interface without touching the poller tests.

Running the tests confirms that they all pass. However, the test is not quite as
concise as it could be. Knowing that the open method was called on the transport
doesn’t necessarily mean that the request was sent. We’d better add an assertion
that checks that send was called as well, as Listing 13.11 shows.

Listing 13.11 Expecting request to be sent

"test start should make XHR request with URL": function () {
var poller = Object.create(ajax.poller);
poller.url = "/url";

poller.start();

var expectedArgs = ["GET", poller.url, true];
var actualArgs = [].slice.call(this.xhr.open.args);
assert(this.xhr.open.called);
assertEquals(expectedArgs, actualArgs);
assert(this.xhr.send.called);

}

13.1.2.5 The complete Callback

How will we issue the requests periodically? A simple solution is to make the request
through setInterval. However, doing so may cause severe problems. Issuing
new requests without knowing whether or not previous requests completed could

 From the Library of WoweBook.Com

ptg

13.1 Polling for Data 301

lead to multiple simultaneous connections, which is not desired. A better solution
is to trigger a delayed request once the previous one finishes. This means that we
have to wrap the success and failure callbacks.

Rather than adding identical success and failure callbacks (save for which
user defined callback they delegate to), we are going to make a small addition to
tddjs.ajax.request; the complete callback will be called when a request
is complete, regardless of success. Listing 13.12 shows the update needed in the
requestWithReadyStateAndStatus helper, as well as three new tests,
asserting that the complete callback is called for successful, failed, and local
requests.

Listing 13.12 Specifying the complete callback

function forceStatusAndReadyState(xhr, status, rs) {
var success = stubFn();
var failure = stubFn();
var complete = stubFn();

ajax.get("/url", {
success: success,
failure: failure,
complete: complete

});

xhr.complete(status, rs);

return {
success: success.called,
failure: failure.called,
complete: complete.called

};
}

TestCase("ReadyStateHandlerTest", {
/* ... */

"test should call complete handler for status 200":
function () {

var request = forceStatusAndReadyState(this.xhr, 200, 4);

assert(request.complete);
},

"test should call complete handler for status 400":

 From the Library of WoweBook.Com

ptg

302 Streaming Data with Ajax and Comet

function () {
var request = forceStatusAndReadyState(this.xhr, 400, 4);

assert(request.complete);
},

"test should call complete handler for status 0":
function () {
var request = forceStatusAndReadyState(this.xhr, 0, 4);

assert(request.complete);
}

});

As expected, all three tests fail given that no complete callback is called
anywhere. Adding it in is straightforward, as Listing 13.13 illustrates.

Listing 13.13 Calling the complete callback

function requestComplete(options) {
var transport = options.transport;

if (isSuccess(transport)) {
if (typeof options.success == "function") {

options.success(transport);
}

} else {
if (typeof options.failure == "function") {

options.failure(transport);
}

}

if (typeof options.complete == "function") {
options.complete(transport);

}
}

When a request is completed, the poller should schedule another request.
Scheduling ahead of time is done with timers, typically setTimeout for a sin-
gle execution such as this. Because the new request will end up calling the same
callback that scheduled it, another one will be scheduled, and we have a continu-
ous polling scheme, even without setInterval. Before we can implement this
feature we need to understand how we can test timers.

 From the Library of WoweBook.Com

ptg

13.1 Polling for Data 303

13.1.3 Testing Timers
JsTestDriver does not do asynchronous tests, so we need some other way of test-
ing use of timers. There is basically two ways of working with timers. The ob-
vious approach is stubbing them as we have done with ajax.request and
ajax.create (or in a similar fashion). To stub them easily within tests, stub
the window object’s setTimeout property, as seen in Listing 13.14.

Listing 13.14 Stubbing setTimeout

(function () {
TestCase("ExampleTestCase", {

setUp: function () {
this.setTimeout = window.setTimeout;

},

tearDown: function () {
window.setTimeout = this.setTimeout;

},

"test timer example": function () {
window.setTimeout = stubFn();
// Setup test

assert(window.setTimeout.called);
}

});
}());

JsUnit, although not the most modern testing solution around (as discussed
in Chapter 3, Tools of the Trade), does bring with it a few gems. One of these is
jsUnitMockTimeout.js, a simple library to aid testing of timers. Note that
although the file is named “mock,” the helpers it defines are more in line with what
we have been calling stubs.

jsUnitMockTimeout provides a Clock object and overrides the native
setTimeout, setInterval, clearTimeout, and clearInterval func-
tions. When Clock.tick(ms) is called, any function scheduled to run sometime
within the next ms number of milliseconds will be called. This allows the test to
effectively fast-forward time and verify that certain functions were called when
scheduled to.

The nice thing about the JsUnit clock implementation is that it makes tests focus
more clearly on the expected behavior rather than the actual implementation—do
some work, pass some time, and assert that some functions were called. Contrast

 From the Library of WoweBook.Com

ptg

304 Streaming Data with Ajax and Comet

this to the usual stubbing approach in which we stub the timer, do some work and
then assert that the stub was used as expected. Stubbing yields shorter tests, but
using the clock yields more communicative tests. We will use the clock to test the
poller to get a feel of the difference.

The jsUnitMockTimeout.js can be downloaded off the book’s website.2

Copy it into the project’s lib directory.

13.1.3.1 Scheduling New Requests

In order to test that the poller schedules new requests we need to:

• Create a poller with a URL

• Start the poller

• Simulate the first request completing

• Stub the send method over again

• Fast-forward time the desired amount of milliseconds

• Assert that the send method is called a second time (this would have been
called while the clock passed time)

To complete the request we will add yet another helper to the fakeXML-

HttpRequest object, which sets the HTTP status code to 200 and calls the on-
readystatechange handler with ready state 4. Listing 13.15 shows the new
method.

Listing 13.15 Adding a helper method to complete request

var fakeXMLHttpRequest = {
/* ... */

complete: function () {
this.status = 200;
this.readyStateChange(4);

}
};

Using this method, Listing 13.16 shows the test following the above require-
ments.

2. http://tddjs.com

 From the Library of WoweBook.Com

http://tddjs.com

ptg

13.1 Polling for Data 305

Listing 13.16 Expecting a new request to be scheduled upon completion

"test should schedule new request when complete":
function () {

var poller = Object.create(ajax.poller);
poller.url = "/url";

poller.start();
this.xhr.complete();
this.xhr.send = stubFn();
Clock.tick(1000);

assert(this.xhr.send.called);
}

The second stub deserves a little explanation. The ajax.request method
used by the poller creates a new XMLHttpRequest object on each request. How
can we expect that simply redefining the send method on the fake instance will
be sufficient? The trick is the ajax.create stub—it will be called once for each
request, but it always returns the same instance within a single test, which is why
this works. In order for the final assert in the above test to succeed, the poller needs
to fire a new request asynchronously after the original request finished.

To implement this we need to schedule a new request from within the com-
plete callback, as seen in Listing 13.17.

Listing 13.17 Scheduling a new request

function start() {
if (!this.url) {

throw new TypeError("Must specify URL to poll");
}

var poller = this;

ajax.request(this.url, {
complete: function () {
setTimeout(function () {

poller.start();
}, 1000);

}
});

}

 From the Library of WoweBook.Com

ptg

306 Streaming Data with Ajax and Comet

Running the tests verifies that this works. Note that the way the test was written
will allow it to succeed for any interval smaller than 1,000 milliseconds. If we wanted
to ensure that the delay is exactly 1,000, not any value below it, we can write another
test that ticks the clock 999 milliseconds and asserts that the callback was not called.

Before we move on we need to inspect the code so far for duplication and other
possible refactorings. All the tests are going to need a poller object, and seeing as
there is more than one line involved in creating one, we will extract setting up the
object to the setUp method, as seen in Listing 13.18.

Listing 13.18 Extracting poller setup

setUp: function () {
/* ... */
this.poller = Object.create(ajax.poller);
this.poller.url = "/url";

}

Moving common setup to the right place enables us to write simpler tests while
still doing the same amount of work. This makes tests easier to read, better at
communicating their intent, and less prone to errors—so long as we don’t extract
too much.

Listing 13.19 shows the test that makes sure we wait the full interval.

Listing 13.19 Making sure the full 1,000ms wait is required

"test should not make new request until 1000ms passed":
function () {
this.poller.start();
this.xhr.complete();
this.xhr.send = stubFn();
Clock.tick(999);

assertFalse(this.xhr.send.called);
}

This test passes immediately, as we already implemented the setTimeout call
correctly.

13.1.3.2 Configurable Intervals

The next step is to make the polling interval configurable. Listing 13.20 shows how
we expect the poller interface to accept interval configuration.

 From the Library of WoweBook.Com

ptg

13.1 Polling for Data 307

Listing 13.20 Expecting the request interval to be configurable

TestCase("PollerTest", {
/* ... */

tearDown: function () {
ajax.create = this.ajaxCreate;
Clock.reset();

},

/* ... */

"test should configure request interval":
function () {

this.poller.interval = 350;
this.poller.start();
this.xhr.complete();
this.xhr.send = stubFn();

Clock.tick(349);
assertFalse(this.xhr.send.called);

Clock.tick(1);
assert(this.xhr.send.called);

}
});

This test does a few things different from the previous two tests. First of all, we
add the call to Clock.reset in the tearDown method to avoid tests interfering
with each other. Second, this test first skips ahead 349ms, asserts that the new re-
quest was not issued, then leaps the last millisecond and expects the request to have
been made.

We usually try hard to keep each test focused on a single behavior, which is
why we rarely make an assertion, exercise the code more, and then make another
assertion the way this test does. Normally, I advise against it, but in this case both of
the asserts contribute to testing the same behavior—that the new request is issued
exactly 350ms after the first request finishes; no less and no more.

Implementing the test is a simple matter of using poller.interval if it is
a number, falling back to the default 1,000ms, as Listing 13.21 shows.

Listing 13.21 Configurable interval

function start() {
/* ... */
var interval = 1000;

 From the Library of WoweBook.Com

ptg

308 Streaming Data with Ajax and Comet

if (typeof this.interval == "number") {
interval = this.interval;

}

ajax.request(this.url, {
complete: function () {

setTimeout(function () {
poller.start();

}, interval);
}

});
}

Running the tests once more yields that wonderful green confirmation of
success.

13.1.4 Configurable Headers and Callbacks
Before we can consider the poller somewhat complete we need to allow users of the
object to set request headers and add callbacks. Let’s deal with the headers first. The
test in Listing 13.22 inspects the headers passed to the fake XMLHttpRequest
object.

Listing 13.22 Expecting headers to be passed to request

"test should pass headers to request": function () {
this.poller.headers = {
"Header-One": "1",
"Header-Two": "2"

};

this.poller.start();

var actual = this.xhr.headers;
var expected = this.poller.headers;
assertEquals(expected["Header-One"],

actual["Header-One"]);
assertEquals(expected["Header-Two"],

actual["Header-Two"]);
}

This test sets two bogus headers, and simply asserts that they were set on the
transport (and thus can safely be expected to be sent with the request).

You may sometimes be tempted to skip running the tests before writ-
ing the implementation—after all, we know they’re going to fail, right? While

 From the Library of WoweBook.Com

ptg

13.1 Polling for Data 309

writing this test, I made a typo, accidentally writing var expected =

this.xhr.headers. It’s an easy mistake to make. Running the test right away
made me aware that something was amiss as the test was passing. Inspecting it
one more time alerted me to the typo. Not running the test before writing the
implementation would have made it impossible to discover the error. No matter
how we had eventually implemented the headers, as long as it didn’t result in an
exception or a syntax error, the test would have passed, lulling us into the false
illusion that everything is fine. Always run tests after updating either the tests or the
implementation!

The implementation in Listing 13.23 is fairly mundane.

Listing 13.23 Passing on the headers

function start() {
/* ... */

ajax.request(this.url, {
complete: function () {
setTimeout(function () {

poller.start();
}, interval);

},

headers: poller.headers
});

}

Next up, we want to ensure all the callbacks are passed along as well. We’ll
start with the success callback. To test that it is passed we can use the complete
method we added to the fake XMLHttpRequest object previously. This simulates
a successful request, and thus should call the success callback. Listing 13.24 shows
the test.

Listing 13.24 Expecting the success callback to be called

"test should pass success callback": function () {
this.poller.success = stubFn();

this.poller.start();
this.xhr.complete();

assert(this.poller.success.called);
}

 From the Library of WoweBook.Com

ptg

310 Streaming Data with Ajax and Comet

Implementing this is a simple matter of adding another line like the one that
passed headers, as seen in Listing 13.25.

Listing 13.25 Passing the success callback

ajax.request(this.url, {
/* ... */

headers: poller.headers,
success: poller.success

});

In order to check the failure callback the same way, we need to extend the
fake XMLHttpRequest object. Specifically, we now need to simulate completing
a request that failed in addition to the already implemented successful request. To
do this we can make complete accept an optional HTTP status code argument,
as Listing 13.26 shows.

Listing 13.26 Completing requests with any status

complete: function (status) {
this.status = status || 200;
this.readyStateChange(4);

}

Keeping 200 as the default status allows us to make this change without updating
or breaking any of the other tests. Now we can write a similar test and implemen-
tation to require the failure callback to be passed. The test is listed in Listing 13.27
and implementation in Listing 13.28

Listing 13.27 Expecting the failure callback to be passed

"test should pass failure callback": function () {
this.poller.failure = stubFn();

this.poller.start();
this.xhr.complete(400);

assert(this.poller.failure.called);
}

 From the Library of WoweBook.Com

ptg

13.1 Polling for Data 311

Listing 13.28 Passing the failure callback

ajax.request(this.url, {
/* ... */

headers: poller.headers,
success: poller.success,
failure: poller.failure

});

The last thing to check is that the complete callback can be used by clients
as well. Testing that it is called when the request completes is no different than
the previous two tests, so I’ll leave doing so as an exercise. The implementation,
however, is slightly different, as can be seen in Listing 13.29.

Listing 13.29 Calling the complete callback if available

ajax.request(this.url, {
complete: function () {

setTimeout(function () {
poller.start();

}, interval);

if (typeof poller.complete == "function") {
poller.complete();

}
},

/* ... */
});

13.1.5 The One-Liner
At this point the poller interface is in a usable state. It’s very basic, and lacks several
aspects before it would be safe for production use. A glaring omission is the lack
of request timeouts and a stop method, partly because timeouts and abort were
also missing from the ajax.request implementation. Using what you have now
learned you should be able to add these, guided by tests, and I urge you to give
it a shot. Using these methods the poller could be improved to properly handle
problems such as network issues.

As promised in the introduction to this chapter, we will add a simple one-liner
interface to go along with ajax.request, ajax.get and ajax.post. It will

 From the Library of WoweBook.Com

ptg

312 Streaming Data with Ajax and Comet

use the ajax.poller object we just built, which means that we can specify its
behavior mostly in terms of a stubbed implementation of it.

The first test will assert that an object inheriting from ajax.poller is created
using Object.create and that its start method is called, as Listing 13.30
shows.

Listing 13.30 Expecting the start method to be called

TestCase("PollTest", {
setUp: function () {
this.request = ajax.request;
this.create = Object.create;
ajax.request = stubFn();

},

tearDown: function () {
ajax.request = this.request;
Object.create = this.create;

},

"test should call start on poller object": function () {
var poller = { start: stubFn() };
Object.create = stubFn(poller);

ajax.poll("/url");

assert(poller.start.called);
}

});

This test case does the usual setup to stub and recover a few methods. By
now, this wasteful duplication should definitely be rubbing you the wrong way. As
mentioned in the previous chapter, we will have to live with it for now, as we will
introduce better stubbing tools in Chapter 16, Mocking and Stubbing.

Apart from the setup, the first test makes sure a new object is created and that
its start method is called, and the implementation can be seen in Listing 13.31.

Listing 13.31 Creating and starting a poller

function poll(url, options) {
var poller = Object.create(ajax.poller);
poller.start();

}

ajax.poll = poll;

 From the Library of WoweBook.Com

ptg

13.1 Polling for Data 313

Next up, Listing 13.32 makes sure the url property is set on the poller. In
order to make this assertion we need a reference to the poller object, so the method
will need to return it.

Listing 13.32 Expecting the url property to be set

"test should set url property on poller object":
function () {

var poller = ajax.poll("/url");

assertSame("/url", poller.url);
}

Implementing this test requires two additional lines, as in Listing 13.33.

Listing 13.33 Setting the URL

function poll(url, options) {
var poller = Object.create(ajax.poller);
poller.url = url;
poller.start();

return poller;
}

The remaining tests will simply check that the headers, callbacks, and interval
are set properly on the poller. Doing so closely resembles what we just did with the
underlying poller interface, so I’ll leave writing the tests as an exercise.

Listing 13.34 shows the final version of ajax.poll.

Listing 13.34 Final version of ajax.poll

function poll(url, options) {
var poller = Object.create(ajax.poller);
poller.url = url;
options = options || {};
poller.headers = options.headers;
poller.success = options.success;
poller.failure = options.failure;
poller.complete = options.complete;
poller.interval = options.interval;
poller.start();

return poller;
}

ajax.poll = poll;

 From the Library of WoweBook.Com

ptg

314 Streaming Data with Ajax and Comet

13.2 Comet
Polling will definitely help move an application in the general direction of “live”
by making a more continuous data stream from the server to the client possible.
However, this simple model has two major drawbacks:

• Polling too infrequently yields high latency.

• Polling too frequently yields too much server load, which may be unnecessary
if few requests actually bring back data.

In systems requiring very low latency, such as instant messaging, polling to keep
a constant data flow could easily mean hammering servers frequently enough to
make the constant requests a scalability issue. When the traditional polling strategy
becomes a problem, we need to consider alternative options.

Comet, Ajax Push, and Reverse Ajax are all umbrella terms for various ways to
implement web applications such that the server is effectively able to push data to the
client at any given time. The straightforward polling mechanism we just built is possi-
bly the simplest way to do this—if it can be defined as a Comet implementation—but
as we have just seen, it yields high latency or poor scalability.

There are a multitude of ways to implement live data streams, and shortly we
will take a shot at one of them. Before we dive back into code, I want to quickly
discuss a few of the options.

13.2.1 Forever Frames
One technique that works without even requiring the XMLHttpRequest object
is so-called “forever frames.” A hidden iframe is used to request a resource from
the server. This request never finishes, and the server uses it to push script tags to
the page whenever new events occur. Because HTML documents are loaded and
parsed incrementally, new script blocks will be executed when the browser receives
them, even if the whole page hasn’t loaded yet. Usually the script tag ends with a
call to a globally defined function that will receive data, possibly implemented as
JSON-P (“JSON with padding”).

The iframe solution has a few problems. The biggest one is lack of error hand-
ling. Because the connection is not controlled by code, there is little we can do if
something goes wrong. Another issue that can be worked around is browser loading
indicators. Because the frame never finishes loading, some browsers will (rightfully
so) indicate to the user that the page is still loading. This is usually not a desirable

 From the Library of WoweBook.Com

ptg

13.3 Long Polling XMLHttpRequest 315

feature, seeing as the data stream should be a background progress the user doesn’t
need to consider.

The forever frame approach effectively allows for true streaming of data and
only uses a single connection.

13.2.2 Streaming XMLHttpRequest
Similar streaming to that of the forever frames is possible using the XMLHttp-
Request object. By keeping the connection open and flushing whenever new data
is available, the server can push a multipart response to the client, which enables it
to receive chunks of data several times over the same connection. Not all browsers
support the required multipart responses, meaning that this approach cannot be
easily implemented in a cross-browser manner.

13.2.3 HTML5
HTML5 provides a couple of new ways to improve server-client communication.
One alternative is the new element, eventsource, which can be used to listen to
server-side events rather effortlessly. The element is provided with a src attribute
and an onmessage event handler. Browser support is still scarce.

Another important API in the HTML5 specification is the WebSocket API.
Once widely supported, any solution using separate connections to fetch and update
data will be mostly superfluous. Web sockets offer a full-duplex communications
channel, which can be held open for as long as required and allows true streaming
of data between client and server with proper error handling.

13.3 Long Polling XMLHttpRequest
Our Comet implementation will useXMLHttpRequest long polling. Long polling
is an improved polling mechanism not very different from the one we have already
implemented. In long polling the client makes a request and the server keeps the
connection open until it has new data, at which point it returns the data and closes
the connection. The client then immediately opens a new connection and waits for
more data. This model vastly improves communication in those cases in which the
client needs data as soon as they’re available, yet data does not appear too often. If
new data appear very often, the long polling method performs like regular polling,
and could possibly be subject to the same failing, in which clients poll too intensively.

Implementing the client side of long polling is easy. Whether or not we are
using regular or long polling is decided by the behavior of the server, wherein

 From the Library of WoweBook.Com

ptg

316 Streaming Data with Ajax and Comet

implementation is less trivial, at least with traditional threaded servers. For these,
such as Apache, long polling does not work well. The one thread-per-connection
model does not scale with long polling, because every client keeps a near-consistent
connection. Evented server architecture is much more apt to deal with these situ-
ations, and allows minimal overhead. We’ll take a closer look at the server-side in
Chapter 14, Server-Side JavaScript with Node.js.

13.3.1 Implementing Long Polling Support
We will use what we have learned to add long polling support to our poller without
requiring a long timeout between requests. The goal of long polling is low latency,
and as such we would like to eliminate the timeout, at least in its current state. How-
ever, because frequent events may cause the client to make too frequent requests,
we need a way to throttle requests in the extreme cases.

The solution is to modify the way we use the timeout. Rather than timing out
the desired amount of milliseconds between requests, we will count elapsed time
from each started request and make sure requests are never fired too close to each
other.

13.3.1.1 Stubbing Date

To test this feature we will need to fake the Date constructor. As with measuring
performance, we’re going to use a new Date() to keep track of elapsed time.
To fake this in tests, we will use a simple helper. The helper accepts a single date
object, and overrides the Date constructor. The next time the constructor is used,
the fake object is returned and the native constructor is restored. The helper lives
in lib/stub.js and can be seen in Listing 13.35.

Listing 13.35 Stubbing the Date constructor for fixed output

(function (global) {
var NativeDate = global.Date;

global.stubDateConstructor = function (fakeDate) {
global.Date = function () {

global.Date = NativeDate;
return fakeDate;

};
};

}(this));

 From the Library of WoweBook.Com

ptg

13.3 Long Polling XMLHttpRequest 317

This helper contains enough logic that it should not be simply dropped into the
project without tests. Testing the helper is left as an exercise.

13.3.1.2 Testing with Stubbed Dates

Now that we have a way of faking time, we can formulate the test that expects new
requests to be made immediately if the minimum interval has passed since the last
request was issued. Listing 13.36 shows the test.

Listing 13.36 Expecting long-running request to immediately re-connect
upon completion

TestCase("PollerTest", {
setUp: function () {

/* ... */
this.ajaxRequest = ajax.request;
/* ... */

},

tearDown: function () {
ajax.request = this.ajaxRequest;
/* ... */

},

/* ... */

"test should re-request immediately after long request":
function () {

this.poller.interval = 500;
this.poller.start();
var ahead = new Date().getTime() + 600;
stubDateConstructor(new Date(ahead));
ajax.request = stubFn();

this.xhr.complete();

assert(ajax.request.called);
}

});

The test sets up the poller interval to 500ms, and proceeds to simulate a request
lasting for 600ms. It does this by making new Date return an object 600ms into
the future, and then uses this.xhr.complete() to complete the fake request.
Once this happens, the minimum interval has elapsed since the previous request

 From the Library of WoweBook.Com

ptg

318 Streaming Data with Ajax and Comet

started and so we expect a new request to have fired immediately. The test fails and
Listing 13.37 shows how to pass it.

Listing 13.37 Using the interval as minimum interval between started requests

function start() {
/* ... */
var requestStart = new Date().getTime();

ajax.request(this.url, {
complete: function () {

var elapsed = new Date().getTime() - requestStart;
var remaining = interval - elapsed;

setTimeout(function () {
poller.start();

}, Math.max(0, remaining));
/* ... */

},

/* ... */
});

}

Running the tests, somewhat surprisingly, reveals that the test still fails. The clue
is the setTimeout call. Note that even if the required interval is 0, we make the
next request through setTimeout, which never executes synchronously.

One benefit of this approach is that we avoid deep call stacks. Using an asyn-
chronous call to schedule the next request means that the current request call
exits immediately, and we avoid making new requests recursively. However, this
cleverness is also what is causing us trouble. The test assumes that the new request
is scheduled immediately, which it isn’t. We need to “touch” the clock inside the
test in order to have it fire queued timers that are ready to run. Listing 13.38 shows
the updated test.

Listing 13.38 Touching the clock to fire ready timers

"test should re-request immediately after long request":
function () {
this.poller.interval = 500;
this.poller.start();
var ahead = new Date().getTime() + 600;
stubDateConstructor(new Date(ahead));

 From the Library of WoweBook.Com

ptg

13.3 Long Polling XMLHttpRequest 319

ajax.request = stubFn();

this.xhr.complete();
Clock.tick(0);

assert(ajax.request.called);
}

And that’s it. The poller now supports long polling with an optional minimal
interval between new requests to the server. The poller could be further extended to
support another option to set minimum grace period between requests, regardless
of the time any given request takes. This would increase latency, but could help a
stressed system.

13.3.2 Avoiding Cache Issues
One possible challenge with the current implementation of the poller is that of
caching. Polling is typically used when we need to stream fresh data off the server,
and having the browser cache responses is likely to cause trouble. Caching can be
controlled from the server via response headers, but sometimes we don’t control
the server implementation. In the interest of making the poller as generally useful as
possible, we will extend it to add some random fuzz to the URL, which effectively
avoids caching.

To test the cache buster, we simply expect the open method of the transport
to be called with the URL including a timestamp, as seen in Listing 13.39.

Listing 13.39 Expecting poller to add cache buster to URL

"test should add cache buster to URL": function () {
var date = new Date();
var ts = date.getTime();
stubDateConstructor(date);
this.poller.url = "/url";

this.poller.start();

assertEquals("/url?" + ts, this.xhr.open.args[1]);
}

To pass this test, Listing 13.40 simply adds the date it is already recording to
the URL when making a request.

 From the Library of WoweBook.Com

ptg

320 Streaming Data with Ajax and Comet

Listing 13.40 Adding a cache buster

function start() {
/* ... */

var requestStart = new Date().getTime();

/* ... */

ajax.request(this.url + "?" + requestStart, {
/* ... */

});
}

Although the cache buster test passes, the test from Listing 13.11 now fails
because it is expecting the unmodified URL to be used. The URL is now being
tested in a dedicated test, and the URL comparison in the original test can be
removed.

As we discussed in the previous chapter, adding query parameters to arbitrary
URLs such as here will break if the URL already includes query parameters. Testing
for such a URL and updating the implementation is left as an exercise.

13.3.3 Feature Tests
As we did with the request interface, we will guard the poller with feature de-
tection, making sure we don’t define the interface if it cannot be successfully used.
Listing 13.41 shows the required tests.

Listing 13.41 Poller feature tests

(function () {
if (typeof tddjs == "undefined") {
return;

}

var ajax = tddjs.namespace("ajax");

if (!ajax.request || !Object.create) {
return;

}

/* ... */
}());

 From the Library of WoweBook.Com

ptg

13.4 The Comet Client 321

13.4 The Comet Client
Although long polling offers good latency and near-constant connections, it also
comes with limitations. The most serious limitation is that of number of concurrent
http connections to any given host in most browsers. Older browsers ship with a
maximum of 2 concurrent connections by default (even though it can be changed
by the user), whereas newer browsers can default to as many as 8. In any case,
the connection limit is important. If you deploy an interface that uses long polling
and a user opens the interface in two tabs, he will wait indefinitely for the third
tab—no HTML, images, or CSS can be downloaded at all, because the poller is
currently using the 2 available connections. Add the fact that XMLHttpRequest
cannot be used for cross-domain requests, and you have a potential problem on your
hands.

This means that long polling should be used consciously. It also means that
keeping more than a single long polling connection in a single page is not a viable
approach. To reliably handle data from multiple sources, we need to pipe all mes-
sages from the server through the same connection, and use a client that can help
delegate the data.

In this section we will implement a client that acts as a proxy for the server. It will
poll a given URL for data and allow JavaScript objects to observe different topics.
Whenever data arrive from the server, the client extracts messages by topic and
notifies respective observers. This way, we can limit ourselves to a single connection,
yet still receive messages relating to a wide range of topics.

The client will use the observable object developed in Chapter 11, The
Observer Pattern, to handle observers and the ajax.poll interface we just imple-
mented to handle the server connection. In other words, the client is a thin piece of
glue to simplify working with server-side events.

13.4.1 Messaging Format
For this example we will keep the messaging format used between the server and
the client very simple. We want client-side objects to be able to observe a single
topic, much like the observable objects did, and be called with a single object
as argument every time new data is available. The simplest solution to this problem
seems to be to send JSON data from the server. Each response sends back an object
whose property names are topics, and their values are arrays of data related to that
topic. Listing 13.42 shows an example response from the server.

 From the Library of WoweBook.Com

ptg

322 Streaming Data with Ajax and Comet

Listing 13.42 Typical JSON response from server

{
"chatMessage": [{
"id": "38912",
"from": "chris",
"to": "",
"body": "Some text ...",
"sent_at": "2010-02-21T21:23:43.687Z"

}, {
"id": "38913",
"from": "lebowski",
"to": "",
"body": "More text ...",
"sent_at": "2010-02-21T21:23:47.970Z"

}],

"stock": { /* ... */ },
/* ... */

}

Observers could possibly be interested in new stock prices, so they would
show their interest through client.observe("stock", fn); Others may
be more interested in the chat messages coming through. I’m not sure what kind
of site would provide both stock tickers and real-time chat on the same page, but
surely in this crazy Web 2.0 day and age, such a site exists. The point being, the data
from the server may be of a diverse nature because a single connection is used for
all streaming needs.

The client will provide a consistent interface by doing two things. First, it
allows observers to observe a single topic rather than the entire feed. Second, it will
call each observer once per message on that topic. This means that in the above
example, observers to the “chatMessage” topic will be called twice, once for each
chat message.

The client interface will look and behave exactly like the observables developed
in Chapter 11, The Observer Pattern. This way code using the client does not need
to be aware of the fact that data is fetched from and sent to a server. Furthermore,
having two identical interfaces means that we can use a regular observable in
tests for code using the client without having to stub XMLHttpRequest to avoid
going to the server in tests.

 From the Library of WoweBook.Com

ptg

13.4 The Comet Client 323

13.4.2 Introducing ajax.cometClient
As usual we’ll start out real simple, asserting that the object in question exists.
ajax.cometClient seems like a reasonable name, and Listing 13.43 tests for its
existence. The test lives in the new file
test/comet_client_test.js.

Listing 13.43 Expecting ajax.cometClient to exist

(function () {
var ajax = tddjs.ajax;

TestCase("CometClientTest", {
"test should be object": function () {
assertObject(ajax.cometClient);

}
});

}());

Implementation is a matter of initial file setup as per usual, seen in Listing 13.44.

Listing 13.44 Setting up the comet_client.js file

(function () {
var ajax = tddjs.namespace("ajax");

ajax.cometClient = {};
}());

13.4.3 Dispatching Data
When an observer is added, we expect it to be called when data is dispatched from
the client. Although we could write tests to dictate the internals of the observe
method, those would be needlessly implementation specific, without describing the
expected behavior very well. Besides, we are going to use the observable object
to handle observers and we don’t want to replicate the entire observable test
case for the client’s observe method.

We will start by implementing dispatch, which later can help us verify the
behavior of observe. Dispatching is the act of breaking up data received from the
server and sending it out to observers.

 From the Library of WoweBook.Com

ptg

324 Streaming Data with Ajax and Comet

13.4.3.1 Adding ajax.cometClient.dispatch

The first test for dispatching data is simply asserting that a method exists,
as Listing 13.45 shows.

Listing 13.45 Expecting dispatch to exist

"test should have dispatch method": function () {
var client = Object.create(ajax.cometClient);

assertFunction(client.dispatch);
}

This test fails, so Listing 13.46 adds it in.

Listing 13.46 Adding the dispatch method

function dispatch() {
}

ajax.cometClient = {
dispatch: dispatch

};

13.4.3.2 Delegating Data

Next, we’re going to feed dispatch an object, and make sure it pushes data out
to observers. However, we haven’t written observe yet, which means that if we
now write a test that requires both methods to work correctly, we’re in trouble
if either fail. Failing unit tests should give a clear indication of where a problem
occurred, and using two methods to verify each other’s behavior is not a good idea
when none of them exist. Instead, we will leverage the fact that we’re going to use
observable to implement both of these. Listing 13.47 expects dispatch to call
notify on the observable observers object.

Listing 13.47 Expecting dispatch to notify

"test dispatch should notify observers": function () {
var client = Object.create(ajax.cometClient);
client.observers = { notify: stubFn() };

client.dispatch({ someEvent: [{ id: 1234 }] });

var args = client.observers.notify.args;

 From the Library of WoweBook.Com

ptg

13.4 The Comet Client 325

assert(client.observers.notify.called);
assertEquals("someEvent", args[0]);
assertEquals({ id: 1234 }, args[1]);

}

The simple data object in this test conforms to the format we specified in the
introduction. To pass this test we need to loop the properties of the data object,
and then loop each topic’s events and pass them to the observers, one by one. Listing
13.48 takes the job.

Listing 13.48 Dispatching data

function dispatch(data) {
var observers = this.observers;

tddjs.each(data, function (topic, events) {
for (var i = 0, l = events.length; i < l; i++) {
observers.notify(topic, events[i]);

}
});

}

The test passes, but this method clearly makes a fair share of assumptions; thus,
it can easily break in lots of situations. We’ll harden the implementation through a
series of small tests for discrepancies.

13.4.3.3 Improved Error Handling

Listing 13.49 asserts that it doesn’t break if there are no observers.

Listing 13.49 What happens if there are no observers?

TestCase("CometClientDispatchTest", {
setUp: function () {

this.client = Object.create(ajax.cometClient);
},

/* ... */

"test should not throw if no observers": function () {
this.client.observers = null;

assertNoException(function () {
this.client.dispatch({ someEvent: [{}] });

}.bind(this));
},

 From the Library of WoweBook.Com

ptg

326 Streaming Data with Ajax and Comet

"test should not throw if notify undefined": function () {
this.client.observers = {};

assertNoException(function () {
this.client.dispatch({ someEvent: [{}] });

}.bind(this));
}

});

All the dispatch tests are now grouped inside their own test case. The test
case adds two new tests: one that checks that dispatch can deal with the case
in which there is no observers object, and another in which the observers
object has been tampered with. The latter test is there simply because the object is
public and could possibly be mangled. Both tests fail, so Listing 13.50 hardens the
implementation.

Listing 13.50 Being careful with observers

function dispatch(data) {
var observers = this.observers;

if (!observers || typeof observers.notify != "function") {
return;

}

/* ... */
}

Next up, we go a little easier on the assumptions on the data structure the
method receives. Listing 13.51 adds two tests that tries (successfully, for now) to
overthrow dispatch by feeding it bad data.

Listing 13.51 Testing dispatch with bad data

TestCase("CometClientDispatchTest", {
setUp: function () {
this.client = Object.create(ajax.cometClient);
this.client.observers = { notify: stubFn() };

},

/* ... */

"test should not throw if data is not provided":
function () {

 From the Library of WoweBook.Com

ptg

13.4 The Comet Client 327

assertNoException(function () {
this.client.dispatch();

}.bind(this));
},

"test should not throw if event is null": function () {
assertNoException(function () {

this.client.dispatch({ myEvent: null });
}.bind(this));

}
});

Running the tests somewhat surprisingly reveals that only the last test fails.
The tddjs.each method that is used for looping was built to handle input not
suitable for looping, so dispatch can already handle null and a missing data
argument. To pass the last test, we need to be a little more careful in the loop over
event objects, as seen in Listing 13.52.

Listing 13.52 Carefully looping event data

function dispatch(data) {
/* ... */

tddjs.each(data, function (topic, events) {
var length = events && events.length;

for (var i = 0; i < length; i++) {
observers.notify(topic, events[i]);

}
});

}

In order to make the dispatch test case complete, we should add some tests
that make sure that notify is really called for all topics in data, and that all events
are passed to observers of a topic. I’ll leave doing so as an exercise.

13.4.4 Adding Observers
With a functional dispatch we have what we need to test the observe method.
Listing 13.53 shows a simple test that expects that observers to be called when data
is available.

 From the Library of WoweBook.Com

ptg

328 Streaming Data with Ajax and Comet

Listing 13.53 Testing observers

TestCase("CometClientObserveTest", {
setUp: function () {
this.client = Object.create(ajax.cometClient);

},

"test should remember observers": function () {
var observers = [stubFn(), stubFn()];
this.client.observe("myEvent", observers[0]);
this.client.observe("myEvent", observers[1]);
var data = { myEvent: [{}] };

this.client.dispatch(data);

assert(observers[0].called);
assertSame(data.myEvent[0], observers[0].args[0]);
assert(observers[1].called);
assertSame(data.myEvent[0], observers[1].args[0]);

}
});

observe is still an empty method, so this test fails. Listing 13.54 pieces in the
missing link. For this to work you need to save the observable implementation
from Chapter 11, The Observer Pattern, in lib/observable.js.

Listing 13.54 Remembering observers

(function () {
var ajax = tddjs.ajax;
var util = tddjs.util;

/* ... */

function observe(topic, observer) {
if (!this.observers) {

this.observers = Object.create(util.observable);
}

this.observers.observe(topic, observer);
}

ajax.cometClient = {
dispatch: dispatch,
observe: observe

};
});

 From the Library of WoweBook.Com

ptg

13.4 The Comet Client 329

The tests now all pass. The observemethod could probably benefit from type
checking this.observers.observe like we did with notify in dispatch.
You might also have noticed that there are no tests asserting what happens if either
topic or events is not what we expect it to be. I urge you to cover those paths
as an exercise.

Both topic and observer are actually checked for us by observable.

observe, but relying on it ties the client more tightly to its dependencies. Be-
sides, it’s generally not considered best practice to allow exceptions to bubble a
long way through a library, because it yields stack traces that are hard to debug for
a developer using our code.

13.4.5 Server Connection
So far, all we have really done is to wrap an observable for a given data format.
It’s time to move on to connecting to the server and making it pass response data
to the dispatch method. The first thing we need to do is to obtain a connection,
as Listing 13.55 specifies.

Listing 13.55 Expecting connect to obtain a connection

TestCase("CometClientConnectTest", {
setUp: function () {

this.client = Object.create(ajax.cometClient);
this.ajaxPoll = ajax.poll;

},

tearDown: function () {
ajax.poll = this.ajaxPoll;

},

"test connect should start polling": function () {
this.client.url = "/my/url";
ajax.poll = stubFn({});

this.client.connect();

assert(ajax.poll.called);
assertEquals("/my/url", ajax.poll.args[0]);

}
});

 From the Library of WoweBook.Com

ptg

330 Streaming Data with Ajax and Comet

In this test we no longer use the fake XMLHttpRequest object, because the
semantics of ajax.poll better describes the expected behavior. Asserting that
the method started polling in terms of fakeXMLHttpRequest would basically
mean duplicating ajax.poll’s test case.

The test fails because connect is not a method. We will add it along with the
call to ajax.poll in one go, as seen in Listing 13.56.

Listing 13.56 Connecting by calling ajax.poll

(function () {
/* ... */

function connect() {
ajax.poll(this.url);

}

ajax.cometClient = {
connect: connect,
dispatch: dispatch,
observe: observe

}
});

What happens if we call connect when the client is already connected? From
the looks of things, more polling. Listing 13.57 asserts that only one connection is
made.

Listing 13.57 Verifying that ajax.poll is only called once

"test should not connect if connected": function () {
this.client.url = "/my/url";
ajax.poll = stubFn({});
this.client.connect();
ajax.poll = stubFn({});

this.client.connect();

assertFalse(ajax.poll.called);
}

To pass this test we need to keep a reference to the poller, and only connect if
this reference does not exist, as Listing 13.58 shows.

 From the Library of WoweBook.Com

ptg

13.4 The Comet Client 331

Listing 13.58 Only connect once

function connect() {
if (!this.poller) {

this.poller = ajax.poll(this.url);
}

}

Listing 13.59 tests for a missing url property.

Listing 13.59 Expecting missing URL to cause an exception

"test connect should throw error if no url exists":
function () {
var client = Object.create(ajax.cometClient);
ajax.poll = stubFn({});

assertException(function () {
client.connect();

}, "TypeError");
}

Passing this test is three lines of code away, as seen in Listing 13.60.

Listing 13.60 Throwing an exception if there is no URL

function connect() {
if (!this.url) {

throw new TypeError("client url is null");
}

if (!this.poller) {
this.poller = ajax.poll(this.url);

}
}

The final missing piece is the success handler that should call dispatch with
the returned data. The resulting data will be a string of JSON data, which needs
to be passed to dispatch as an object. To test this we will use the fakeXML-
HttpRequest object once again, to simulate a completed request that returns with
some JSON data. Listing 13.61 updates thefakeXMLHttpRequest.complete
method to accept an optional response text argument.

 From the Library of WoweBook.Com

ptg

332 Streaming Data with Ajax and Comet

Listing 13.61 Accepting response data in complete

var fakeXMLHttpRequest = {
/* ... */

complete: function (status, responseText) {
this.status = status || 200;
this.responseText = responseText;
this.readyStateChange(4);

}
}

Listing 13.62 shows the test, which uses the updated complete method.

Listing 13.62 Expecting client to dispatch data

TestCase("CometClientConnectTest", {
setUp: function () {
/* ... */
this.ajaxCreate = ajax.create;
this.xhr = Object.create(fakeXMLHttpRequest);
ajax.create = stubFn(this.xhr);

},

tearDown: function () {
/* ... */
ajax.create = this.ajaxCreate;

},

/* ... */

"test should dispatch data from request": function () {
var data = { topic: [{ id: "1234" }],

otherTopic: [{ name: "Me" }] };
this.client.url = "/my/url";
this.client.dispatch = stubFn();

this.client.connect();
this.xhr.complete(200, JSON.stringify(data));

assert(this.client.dispatch.called);
assertEquals(data, this.client.dispatch.args[0]);

}
});

 From the Library of WoweBook.Com

ptg

13.4 The Comet Client 333

The test fails as dispatch was not called. To fix this we need to parse the
responseText as JSON and call the method from within the success callback of
the request. A very naive implementation can be seen in Listing 13.63.

Listing 13.63 Naive success callback to the poller

function connect() {
if (!this.url) {

throw new TypeError("Provide client URL");
}

if (!this.poller) {
this.poller = ajax.poll(this.url, {
success: function (xhr) {

this.dispatch(JSON.parse(xhr.responseText));
}.bind(this)

});
}

}

At this point I am expecting this test to still fail in at least a few browsers. As
we discussed in Chapter 8, ECMAScript 5th Edition, EcmaScript5 specifies a JSON
object. However, it is not yet widely implemented, least of all in older browsers such
as Internet Explorer 6. Still, the tests pass. What’s happening is that JsTestDriver is
already using Douglas Crockford’s JSON parser internally, and because it does not
namespace its dependencies in the test runner, our test accidentally works because
the environment loads our dependencies for us. Hopefully, this issue with JsTest-
Driver will be worked out, but until then, we need to keep this in the back of our
heads. The proper solution is of course to add, e.g., json2.js from json.org in
lib/.

I mentioned that the above implementation was naive. A successful response
from the server does not imply valid JSON. What do you suppose happens when
the test in Listing 13.64 runs?

Listing 13.64 Expecting badly formed data not to be dispatched

"test should not dispatch badly formed data": function () {
this.client.url = "/my/url";
this.client.dispatch = stubFn();

this.client.connect();

 From the Library of WoweBook.Com

ptg

334 Streaming Data with Ajax and Comet

this.xhr.complete(200, "OK");

assertFalse(this.client.dispatch.called);
}

Furthermore, if we expect the server to return JSON data, it would probably
be a good idea to indicate as much by sending the right Accept header with the
request.

13.4.5.1 Separating Concerns

The current implementation has a code smell—something that doesn’t feel quite
right. JSON parsing doesn’t really belong inside a Comet client; its responsibili-
ties are delegating server-side events to client-side observers and publishing client-
side events to the server. Ideally the transport would handle correct encoding
of data. As I’ve mentioned more than a few times already, the ajax.request
should be refactored such that it provides an object that can be extended. This
would have allowed us to extend it to provide a custom request object specifi-
cally for JSON requests, seeing as that is quite a common case. Using such an
API, the connect method could look something like Listing 13.65, which is a lot
leaner.

Listing 13.65 Using tailored JSON requests

function connect() {
if (!this.url) {
throw new TypeError("Provide client URL");

}

if (!this.poller) {
this.poller = ajax.json.poll(this.url, {

success: function (jsonData) {
this.dispatch(jsonData);

}.bind(this)
});

}
}

Granted, such a poller could be provided with the current implementation of
ajax.request and ajax.poll, but parsing JSON belongs in ajax.poll as
little as it does in ajax.cometClient.

 From the Library of WoweBook.Com

ptg

13.4 The Comet Client 335

13.4.6 Tracking Requests and Received Data
When polling, we need to know what data to retrieve on each request. With long
polling, the client polls the server; the server keeps the connection until new data is
available, passes it, and closes. Even if the client immediately makes another request,
there is a risk of loosing data between requests. This situation gets even worse
with normal polling. How will the server know what data to send back on a given
request?

To be sure all the data makes it to the client, we need a token to track requests.
Ideally, the server should not need to keep track of its clients. When polling a single
source of data, such as “tweets” on Twitter, a reasonable token could be the unique
id of the last tweet received by the client. The client sends the id with each request,
instructing the server to respond with any newer tweets.

In the case of the Comet client, we expect it to handle all kinds of data streams,
and unless the server uses some kind of universally unique id, we cannot rely on the
id token. Another possibility is to have the client pass along a timestamp indicating
when the previous request finished. In other words, the client asks the server to
respond with all data that was created since the last request finished. This approach
has a major disadvantage; it assumes that the client and server are in sync, possibly
down to millisecond granularity and beyond. Such an approach is so fragile it cannot
even be expected to work reliably with clients in the same time zone.

An alternative solution is to have the server return a token with each response.
The kind of token can be decided by the server, all the client needs to do is to
include it in the following request. This model works well with both the id and
timestamp approaches as well as others. The client doesn’t even know what the
token represents.

To include the token in the request, a custom request header or a URL parameter
are both good choices. We will make the Comet client pass it along as a request
header, called X-Access-Token. The server will respond with data guaranteed
to be newer than data represented by the token.

Listing 13.66 expects the custom header to be provided.

Listing 13.66 Expecting the custom header to be set

"test should provide custom header": function () {
this.client.connect();

assertNotUndefined(this.xhr.headers["X-Access-Token"]);
}

This test fails as expected, and the implementation can be seen in Listing 13.67.

 From the Library of WoweBook.Com

ptg

336 Streaming Data with Ajax and Comet

Listing 13.67 Adding a custom header

function connect() {
/* ... */

if (!this.poller) {
this.poller = ajax.poll(this.url, {

/* ... */

headers: {
"Content-Type": "application/json",
"X-Access-Token": ""

}
});

}
}

For the first request the token will be blank. In a more sophisticated imple-
mentation the initial token could possibly be set manually, e.g., by reading it from
a cookie or local database to allow a user to pick up where she left off.

Sending blank tokens on every request doesn’t really help us track requests. The
next test, shown in Listing 13.68, expects that the token returned from the server
is sent on the following request.

Listing 13.68 Expecting the received token to be passed on second request

tearDown: function () {
/* ... */
Clock.reset();

},

/* ... */

"test should pass token on following request":
function () {
this.client.connect();
var data = { token: 1267482145219 };

this.xhr.complete(200, JSON.stringify(data));
Clock.tick(1000);

var headers = this.xhr.headers;
assertEquals(data.token, headers["X-Access-Token"]);

}

 From the Library of WoweBook.Com

ptg

13.4 The Comet Client 337

This test simulates a successful request with a JSON response that includes
only the token. After completing the request, the clock is ticked 1,000 milliseconds
ahead to trigger a new request, and for this request we expect the token header to
be sent with the received token. The test fails as expected; the token is still the blank
string.

Note that because we didn’t make it possible to configure the polling interval
through the client, we cannot set the polling interval explicitly in the test. This
makes the Clock.tick(1000) something of a magical incantation, as it is not
obvious why it is ticked exactly 1,000 milliseconds ahead. The client should have
a way to set the poller interval, and when it does, this test should be updated for
clarity.

To pass this test we need a reference to the headers object so we can change
it after each request. Listing 13.69 shows the implementation.

Listing 13.69 Updating the request header upon request completion

function connect() {
/* ... */

var headers = {
"Content-Type": "application/json",
"X-Access-Token": ""

};

if (!this.poller) {
this.poller = ajax.poll(this.url, {
success: function (xhr) {

try {
var data = JSON.parse(xhr.responseText);
headers["X-Access-Token"] = data.token;
this.dispatch(data);

} catch (e) {}
}.bind(this),

headers: headers
});

}
}

With this implementation in place the test passes, yet we are not done. If, for
some reason, the server fails to deliver a token in response to a request, we should
not blatantly overwrite the token we already have with a blank one, losing track of
our progress. Also, we do not need to send the token to the dispatch method.

 From the Library of WoweBook.Com

ptg

338 Streaming Data with Ajax and Comet

Are there other cases related to the request token that should be tested? Think it
over, write tests, and update the implementation to fit.

13.4.7 Publishing Data
The Comet client also needs a notify method. As an exercise, try to use TDD to
implement this method according to these requirements:

• The signature should be client.notify(topic, data)

• The method should POST to client.url

• The data should be sent as an object with properties topic and data

What Content-Type will you send the request with? Will the choice of
Content-Type affect the body of the request?

13.4.8 Feature Tests
The cometClient object only depends directly on observable and the poller,
so adding feature tests to allow it to fail gracefully is fairly simple, as seen in
Listing 13.70.

Listing 13.70 Comet client feature tests

(function () {
if (typeof tddjs == "undefined") {
return;

}

var ajax = tddjs.namespace("ajax");
var util = tddjs.namespace("util");

if (!ajax.poll || !util.observable) {
return;

}

/* ... */
}());

 From the Library of WoweBook.Com

ptg

13.5 Summary 339

13.5 Summary
In this chapter we have built on top of the ajax methods developed in Chapter 12,
Abstracting Browser Differences: Ajax, and implemented polling, the client side of
long polling and finally a simple Comet client that leveraged the observable

object developed in Chapter 11, The Observer Pattern. The main focus has, as
usual, been on the testing and how to properly use the tests to instruct us as we dig
deeper and deeper. Still, we have been able to get a cursory look at technologies
collectively referred to as Comet, Reverse Ajax, and others.

In the previous chapter we introduced and worked closely with stubs. In this
chapter we developed the poller slightly differently by not stubbing its immediate
dependency. The result yields less implementation specific tests at the cost of making
them mini integration tests.

This chapter also gave an example on how to stub and test timers and the
Date constructor. Having used the Clock object to fake time, we have seen how it
would be useful if the Date constructor could somehow be synced with it to more
effectively fake time in tests.

This chapter concludes our client-side library development for now. The next
chapter will use test-driven development to implement the server-side of a long
polling application using the node.js framework.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

14Server-Side JavaScript
with Node.js

Netscape pushed JavaScript on the server way back in 1996. Since then, several
others have tried to do the same, yet none of these projects have made a big impact on
the developer community. That is, until 2009, when Ryan Dahl released the Node.js
runtime. At the same time, CommonJS, an attempt at a standard library specification
for JavaScript, is rapidly gaining attention and involvement from several server-side
JavaScript library authors and users alike. Server-side JavaScript is happening, and
it’s going to be big.

In this chapter we will use test-driven development to develop a small server-side
application using Node. Through this exercise we’ll get to know Node and its con-
ventions, work with JavaScript in a more predictable environment than browsers,
and draw from our experience with TDD and evented programming from previous
chapters to produce the backend of an in-browser chat application that we will
finish in the next chapter.

14.1 The Node.js Runtime
Node.js—“Evented I/O for V8 JavaScript”—is an evented server-side JavaScript
runtime implemented on top of Google’s V8 engine, the same engine that powers
Google Chrome. Node uses an event loop and consists almost entirely of asyn-
chronous non-blocking API’s, making it a good fit for streaming applications such
as those built using Comet or WebSockets.

341

 From the Library of WoweBook.Com

ptg

342 Server-Side JavaScript with Node.js

As we discussed in Chapter 13, Streaming Data with Ajax and Comet, web servers
that allocate one thread per connection, such as Apache httpd, do not scale well in
terms of concurrency. Even more so when concurrent connections are long lived.

When Node receives a request, it will start listening for certain events, such
as data ready from a database, the file system, or a network service. It then goes
to sleep. Once the data is ready, events notify the request, which then finishes the
connection. This is all seamlessly handled by Node’s event loop.

JavaScript developers should feel right at home in Node’s evented world. After
all, the browser is evented too, and most JavaScript code is triggered by events.
Just take a look at the code we’ve developed throughout this book. In Chapter 10,
Feature Detection, we wrote a cross browser way to assign event handlers to DOM
elements; in Chapter 11, The Observer Pattern, we wrote a library to observe events
on any JavaScript object; and in Chapter 12, Abstracting Browser Differences: Ajax
and Chapter 13, Streaming Data with Ajax and Comet, we used callbacks to asyn-
chronously fetch data from the server.

14.1.1 Setting up the Environment
Setting up Node is pretty straightforward, unless you’re on Windows. Unfortunately,
at the time of writing, Node does not run on Windows. It is possible to get it
running in Cygwin with some effort, but I think the easiest approach for Windows
users is to download and install the free virtualization software VirtualBox1 and
run, e.g., Ubuntu Linux2 inside it. To install Node, download the source from
http://nodejs.org and follow instructions.

14.1.1.1 Directory Structure

The project directory structure can be seen in Listing 14.1.

Listing 14.1 Initial directory structure

chris@laptop:~/projects/chapp$ tree
.
|-- deps
|-- lib
| '-- chapp
'-- test

'-- chapp

1. http://www.virtualbox.org/
2. http://www.ubuntu.com/

 From the Library of WoweBook.Com

http://www.virtualbox.org/
http://www.ubuntu.com/
http://nodejs.org and follow instructions

ptg

14.1 The Node.js Runtime 343

I named the project “chapp,” as in “chat app.” The deps directory is for third
party dependencies; the other two should be self-explanatory.

14.1.1.2 Testing Framework

Node has a CommonJS compliant Assert module, but in line with the low-level
focus of Node, it only provides a few assertions. No test runner, no test cases, and
no high-level testing utilities; just the bare knuckles assertions, enabling framework
authors to build their own.

For this chapter we will be using a version of a small testing framework called
Nodeunit. Nodeunit was originally designed to look like QUnit, jQuery’s unit testing
framework. I have added some bells and whistles to it to bring it slightly closer to
JsTestDriver in style, so testing with it should look familiar.

The version of Nodeunit used for this chapter can be downloaded from the
book’s website,3 and should live in deps/nodeunit. Listing 14.2 shows a small
script to help run tests. Save it in ./run_tests and make it executable with
chmod +x run_tests.

Listing 14.2 Script to run tests

#!/usr/local/bin/node

require.paths.push(__dirname);
require.paths.push(__dirname + "/deps");
require.paths.push(__dirname + "/lib");

require("nodeunit").testrunner.run(["test/chapp"]);

14.1.2 Starting Point
There’s a lot of code ahead of us, and to get us started I will provide a basic starting
point, consisting of a small HTTP server and a convenient script to start it. We will
then proceed top-down, actually taking the server for a spin halfway.

14.1.2.1 The Server

To create an HTTP server in Node we need the http module and its create-
Server method. This method accepts a function, which will be attached as a
request listener. CommonJS modules will be properly introduced in a moment,

3. http://tddjs.com

 From the Library of WoweBook.Com

3. http://tddjs.com

ptg

344 Server-Side JavaScript with Node.js

as will Node’s event module. Listing 14.3 shows the server, which should live in
lib/chapp/server.js.

Listing 14.3 A Node.js HTTP server

var http = require("http");
var url = require("url");
var crController = require("chapp/chat_room_controller");

module.exports = http.createServer(function (req, res) {
if (url.parse(req.url).pathname == "/comet") {
var controller = crController.create(req, res);
controller[req.method.toLowerCase()]();

}
});

The server requires the first module that we are going to write—the chat-
RoomController, which deals with the request/response logic. The server cur-
rently only responds to requests to the /comet URL.

14.1.2.2 The Startup Script

To start the server we need a script similar to the run_tests script, which sets up
the load path, requires the server file, and starts the server. Listing 14.4 shows the
script, which should be saved in ./run_server, and should be made executable
with chmod +x run_server.

Listing 14.4 Startup script

#!/usr/local/bin/node

require.paths.push(__dirname);
require.paths.push(__dirname + "/deps");
require.paths.push(__dirname + "/lib");

require("chapp/server").listen(process.argv[2] || 8000);

The listen call starts the server. process.argv contains all the command
line arguments, i.e., the interpreter, the file being run, and any additional arguments
given when running the script. The script is run with ./run_server 8080.
Leaving out the port number starts the server on the default port 8000.

 From the Library of WoweBook.Com

ptg

14.2 The Controller 345

14.2 The Controller
For any request to the /comet URL, the server will call the controller’s create
method, passing it request and response objects. It then proceeds to call a method
on the resulting controller corresponding to the HTTP method used. In this chapter
we will only implement the get and post methods.

14.2.1 CommonJS Modules
Node implements CommonJS modules, a structured way to manage reusable
JavaScript components. Unlike script files loaded in browsers, the implicit scope in
modules is not the global scope. This means that we don’t need to wrap everything
in anonymous closures to avoid leaking identifiers. To add a function or object to
the module, we assign properties on the special exports object. Alternatively,
we can specify the entire module as a single object, and assign this to module.

exports = myModule.
Modules are loaded with require("my_module"). This function uses the

paths specified in the require.paths array, which can be modified as we see fit,
just like we did in Listing 14.2. We can also load modules not on the load path by
prefixing the module name with "./", which causes Node to look for the module
relative to the current module file.

14.2.2 Defining the Module: The First Test
With a basic overview of CommonJS modules, we can write our very first test, as
seen in Listing 14.5. It asserts that the controller object exists, and that it has a
create method.

Listing 14.5 Expecting the controller to exist

var testCase = require("nodeunit").testCase;
var chatRoomController = require("chapp/chat_room_controller");

testCase(exports, "chatRoomController", {
"should be object": function (test) {

test.isNotNull(chatRoomController);
test.isFunction(chatRoomController.create);
test.done();

}
});

 From the Library of WoweBook.Com

ptg

346 Server-Side JavaScript with Node.js

Save the test in test/chapp/chat_room_controller_test.js and
run it with ./run_tests. It fails horribly with an exception stating that Node
“Can’t find module chapp/chat room controller.” Save the contents of Listing 14.6
in lib/chapp/chat_room_controller.js to resolve the issue.

Listing 14.6 Creating the controller module

var chatRoomController = {
create: function () {}

};

module.exports = chatRoomController;

Running the tests again should produce more uplifting output along the lines
of Listing 14.7.

Listing 14.7 First successful test

chris@laptop:~/projects/chapp$./run_tests
test/chapp/chat_room_controller_test.js
chatRoomController should be object

OK: 2 assertions (2ms)

Note how the test case receives a test object and calls its done method.
Nodeunit runs tests asynchronously, so we need to let it know explicitly when a test
is done. In Part I, Test-Driven Development, I argued that unit tests rarely need to be
asynchronous. For Node the situation is a little bit different, because not allowing
asynchronous tests would basically mean having to stub or mock every system call,
which simply is not a viable option. Doing so would make testing challenging, and
without proper interface enforcement, error-prone.

14.2.3 Creating a Controller
Listing 14.8 creates a controller and asserts that it has request and response

properties corresponding to the arguments we pass the create method.

Listing 14.8 Test creating new controllers

testCase(exports, "chatRoomController.create", {
"should return object with request and response":
function (test) {
var req = {};
var res = {};

 From the Library of WoweBook.Com

ptg

14.2 The Controller 347

var controller = chatRoomController.create(req, res);

test.inherits(controller, chatRoomController);
test.strictEqual(controller.request, req);
test.strictEqual(controller.response, res);
test.done();

}
});

Notice that Node’s assertions flip the order of the arguments compared with
what we’re used to with JsTestDriver. Here, the order is actual, expected

rather than the usual expected, actual. This is an important detail to get
right, as failure messages will suffer if we don’t.

As V8 implements parts of ECMAScript5, we can pass this test by using
Object.create, as Listing 14.9 shows.

Listing 14.9 Creating controllers

var chatRoomController = {
create: function (request, response) {

return Object.create(this, {
request: { value: request },
response: { value: response }

});
}

};

The test passes. Defining request and response this way means that their
enumerable, configurable and writable attributes are set to the default
value, which in all cases isfalse. But you don’t need to trust me, you can test it using
test.isWritable, test.isConfigurable and test.isEnumerable,
or their counterparts, test.isNot*.

14.2.4 Adding Messages on POST
The post action accepts JSON in the format sent by cometClient from
Chapter 13, Streaming Data with Ajax and Comet, and creates messages. If your
memory’s a bit rusty on the JSON format, a sample request to create a message can
be seen in Listing 14.10.

 From the Library of WoweBook.Com

ptg

348 Server-Side JavaScript with Node.js

Listing 14.10 JSON request to create message

{ "topic": "message",
"data": {
"user": "cjno",
"message": "Listening to the new 1349 album"

}
}

The outer “topic” property describes what kind of event to create, in this
example a new message, whereas the outer “data” property holds the actual data.
The client was made this way so it could post different types of client-side events
to the same server resource. For instance, when someone joins the chat, the client
might send JSON like Listing 14.11.

Listing 14.11 JSON request to join the chat room

{ "topic": "userEnter",
"data": {
"user": "cjno"

}
}

If the backend is ever extended to support several chat rooms, the message
might also include which room the user entered.

14.2.4.1 Reading the Request Body

The first thing post needs to do is retrieve the request body, which contains
the URL encoded JSON string. As a request comes in, the request object will
emit “data” events, passing chunks of the request body. When all chunks have
arrived, the request object emits a “end” event. The equivalent of our observ-
able from Chapter 11, The Observer Pattern, that powers Node’s events is the
events.EventEmitter interface.

In tests, we will stub the request object, which needs to be an EventEmit-
ter so we can trigger the “data” and “end” events we are interested in testing. We
can then emit a couple of chunks from the test, and assert that the joined string is
passed to JSON.parse. To verify that the entire body is passed to JSON.parse,
we can stub it using the stub function from Chapter 12, Abstracting Browser Differ-
ences: Ajax. Save Listing 14.12 in deps/stub.js.

 From the Library of WoweBook.Com

ptg

14.2 The Controller 349

Listing 14.12 Using stubFn with Node

module.exports = function (returnValue) {
function stub() {

stub.called = true;
stub.args = arguments;
stub.thisArg = this;
return returnValue;

}

stub.called = false;

return stub;
};

Listing 14.13 shows the test. It includes quite a bit of setup code, which we will
move around in a moment.

Listing 14.13 Expecting the request body to be parsed as JSON

var EventEmitter = require("events").EventEmitter;
var stub = require("stub");

/* ... */

testCase(exports, "chatRoomController.post", {
setUp: function () {

this.jsonParse = JSON.parse;
},

tearDown: function () {
JSON.parse = this.jsonParse;

},

"should parse request body as JSON": function (test) {
var req = new EventEmitter();
var controller = chatRoomController.create(req, {});
var data = { data: { user: "cjno", message: "hi" } };
var stringData = JSON.stringify(data);
var str = encodeURI(stringData);

JSON.parse = stub(data);
controller.post();
req.emit("data", str.substring(0, str.length / 2));
req.emit("data", str.substring(str.length / 2));
req.emit("end");

 From the Library of WoweBook.Com

ptg

350 Server-Side JavaScript with Node.js

test.equals(JSON.parse.args[0], stringData);
test.done();

}
});

setUp and tearDown take care of restoring JSON.parse after the test has
stubbed it out. We then create a controller object using fake request and response
objects along with some test data to POST. Because the tddjs.ajax tools built
in the two previous chapters currently only support URL encoded data, we must
encode the test data to fit.

The test then emits a simple URL encoded JSON string in two chunks, the
“end” event, and finally expects the JSON.parse method to have been called.
Phew! Listing 14.14 shows one way to pass the test.

Listing 14.14 Reading the request body and parsing it as JSON

var chatRoomController = {
/* ... */

post: function () {
var body = "";

this.request.addListener("data", function (chunk) {
body += chunk;

});

this.request.addListener("end", function () {
JSON.parse(decodeURI(body));

});
}

};

As the test passes it is time to remove duplication. Aggressively removing dupli-
cation is the key to a flexible code base that is easy to change and mold any way we
see fit. The tests are part of code base, and need constant refactoring and improve-
ment too. Both the test cases for create and post create a controller instance
using stub request and response objects, and sure enough, the get test case will do
just the same. We can extract this into a function that can be used as a shared setup
method. Listing 14.15 has the lowdown.

 From the Library of WoweBook.Com

ptg

14.2 The Controller 351

Listing 14.15 Sharing setup

function controllerSetUp() {
var req = this.req = new EventEmitter();
var res = this.res = {};
this.controller = chatRoomController.create(req, res);
this.jsonParse = JSON.parse;

}

function controllerTearDown() {
JSON.parse = this.jsonParse;

}

/* ... */

testCase(exports, "chatRoomController.create", {
setUp: controllerSetUp,
/* ... */

});

testCase(exports, "chatRoomController.post", {
setUp: controllerSetUp,
tearDown: controllerTearDown,
/* ... */

});

With this change the tests should refer to controller, req and res as
properties of this.

14.2.4.2 Extracting the Message

With the request body readily parsed as JSON, we need to extract the message
from the resulting object and pass it somewhere it will be kept safe. As we’re going
through this exercise top-down, we don’t have a data model yet. We will have to
decide roughly what it’s going to look like, and stub it while we finish the post
method.

Messages should belong to a chat room. As the chat room needs to persist
between requests, the controller will depend on the server assigning it a chatRoom
object, on which it can call addMessage(user, message).

The test in Listing 14.16 verifies that post passes data to addMessage

according to this interface.

 From the Library of WoweBook.Com

ptg

352 Server-Side JavaScript with Node.js

Listing 14.16 Expecting post to add message

"should add message from request body": function (test) {
var data = { data: { user: "cjno", message: "hi" } };

this.controller.chatRoom = { addMessage: stub() };
this.controller.post();
this.req.emit("data", encodeURI(JSON.stringify(data)));
this.req.emit("end");

test.ok(this.controller.chatRoom.addMessage.called);
var args = this.controller.chatRoom.addMessage.args;
test.equals(args[0], data.data.user);
test.equals(args[1], data.data.message);
test.done();

}

As before, we call the post method to have it add its request body listeners,
then we emit some fake request data. Finally we expect the controller to have called
chatRoom.addMessage with the correct arguments.

To pass this test we need to access this.chatRoom from inside the anony-
mous “end” event handler. To achieve this we can bind it to avoid having to manu-
ally keep local references to this. At the time of writing, V8 does not yet support
Function.prototype.bind, but we can use the custom implementation from
Listing 6.7 in Chapter 6, Applied Functions and Closures. Save the implementation
in deps/function-bind.js and Listing 14.17 should run as expected.

Listing 14.17 Adding messages on POST

require("function-bind");

var chatRoomController = {
/* ... */

post: function () {
/* ... */

this.request.addListener("end", function () {
var data = JSON.parse(decodeURI(body)).data;
this.chatRoom.addMessage(data.user, data.message);

}.bind(this));
}

};

 From the Library of WoweBook.Com

ptg

14.2 The Controller 353

Unfortunately, this doesn’t play out exactly as planned. The previous test, which
also calls post, is now attempting to call addMessage on chatRoom, which is
undefined in that test. We can fix the issue by moving the chatRoom stub into
setUp as Listing 14.18 does.

Listing 14.18 Sharing the chatRoom stub

function controllerSetUp() {
/* ... */
this.controller.chatRoom = { addMessage: stub() };

}

All the tests go back to a soothing green, and we can turn our attention to
the duplicated logic we just introduced in the second test. In particular, both tests
simulates sending a request with a body. We can simplify the tests considerably by
extracting this logic into the setup. Listing 14.19 shows the updated tests.

Listing 14.19 Cleaning up post tests

function controllerSetUp() {
/* ... */

this.sendRequest = function (data) {
var str = encodeURI(JSON.stringify(data));
this.req.emit("data", str.substring(0, str.length / 2));
this.req.emit("data", str.substring(str.length / 2));
this.req.emit("end");

};
}

testCase(exports, "chatRoomController.post", {
/* ... */

"should parse request body as JSON": function (test) {
var data = { data: { user: "cjno", message: "hi" } };
JSON.parse = stub(data);

this.controller.post();
this.sendRequest(data);

test.equals(JSON.parse.args[0], JSON.stringify(data));
test.done();

},

/* ... */
});

 From the Library of WoweBook.Com

ptg

354 Server-Side JavaScript with Node.js

The cleaned up tests certainly are a lot easier to follow, and with the send-
Request helper method, writing new tests that make requests will be easier as
well. All tests pass and we can move on.

14.2.4.3 Malicious Data

Notice that we are currently accepting messages completely unfiltered. This can
lead to all kinds of scary situations, for instance consider the effects of the request
in Listing 14.20

Listing 14.20 Malicious request

{ "topic": "message",
"data": {
"user": "cjno",
"message":

"<script>window.location = 'http://hacked';</script>"
}

}

Before deploying an application like the one we are currently building we should
take care to not blindly accept any end user data unfiltered.

14.2.5 Responding to Requests
When the controller has added the message, it should respond and close the connec-
tion. In most web frameworks, output buffering and closing the connection happen
automatically behind the scenes. The HTTP server support in Node, however, was
consciously designed with data streaming and long polling in mind. For this reason,
data is never buffered, and connections are never closed until told to do so.

http.ServerResponse objects offer a few methods useful to output a re-
sponse, namely writeHead, which writes the status code and response headers;
write, which writes a chunk to the response body; and finally end.

14.2.5.1 Status Code

As there really isn’t much feedback to give the user when a message is added,
Listing 14.21 simply expects post to respond with an empty “201 Created.”

Listing 14.21 Expecting status code 201

function controllerSetUp() {
/* ... */
var res = this.res = { writeHead: stub() };

 From the Library of WoweBook.Com

ptg

14.2 The Controller 355

/* ... */
}

testCase(exports, "chatRoomController.post", {
/* ... */
"should write status header": function (test) {
var data = { data: { user: "cjno", message: "hi" } };

this.controller.post();
this.sendRequest(data);

test.ok(this.res.writeHead.called);
test.equals(this.res.writeHead.args[0], 201);
test.done();

}
});

Listing 14.22 faces the challenge and makes the actual call to writeHead.

Listing 14.22 Setting the response code

post: function () {
/* ... */

this.request.addListener("end", function () {
var data = JSON.parse(decodeURI(body)).data;
this.chatRoom.addMessage(data.user, data.message);
this.response.writeHead(201);

}.bind(this));
}

14.2.5.2 Closing the Connection

Once the headers have been written, we should make sure the connection is closed.
Listing 14.23 shows the test.

Listing 14.23 Expecting the response to be closed

function controllerSetUp() {
/* ... */
var res = this.res = {

writeHead: stub(),
end: stub()

};

/* ... */
};

 From the Library of WoweBook.Com

ptg

356 Server-Side JavaScript with Node.js

testCase(exports, "chatRoomController.post", {
/* ... */
"should close connection": function (test) {
var data = { data: { user: "cjno", message: "hi" } };

this.controller.post();
this.sendRequest(data);

test.ok(this.res.end.called);
test.done();

}
});

The test fails, and Listing 14.24 shows the updated postmethod, which passes
all the tests.

Listing 14.24 Closing the response

post: function () {
/* ... */

this.request.addListener("end", function () {
/* ... */
this.response.end();

}.bind(this));
}

That’s it for the post method. It is now functional enough to properly handle
well-formed requests. In a real-world setting, however, I encourage more rigid input
verification and error handling. Making the method more resilient is left as an
exercise.

14.2.6 Taking the Application for a Spin
If we make a small adjustment to the server, we can now take the application for a
spin. In the original listing, the server did not set up a chatRoom for the controller.
To successfully run the application, update the server to match Listing 14.25.

Listing 14.25 The final server

var http = require("http");
var url = require("url");
var crController = require("chapp/chat_room_controller");
var chatRoom = require("chapp/chat_room");

 From the Library of WoweBook.Com

ptg

14.2 The Controller 357

var room = Object.create(chatRoom);

module.exports = http.createServer(function (req, res) {
if (url.parse(req.url).pathname == "/comet") {

var controller = crController.create(req, res);
controller.chatRoom = room;
controller[req.method.toLowerCase()]();

}
});

For this to work, we need to add a fake chatRoom module. Save the contents
of Listing 14.26 to lib/chapp/chat_room.js.

Listing 14.26 A fake chat room

var sys = require("sys");

var chatRoom = {
addMessage: function (user, message) {

sys.puts(user + ": " + message);
}

};

module.exports = chatRoom;

Listing 14.27 shows how to use node-repl, an interactive Node shell, to
encode some POST data and post it to the application using curl, the command
line HTTP client. Run it in another shell, and watch the output from the shell that
is running the application.

Listing 14.27 Manually testing the app from the command line

$ node-repl
node> var msg = { user:"cjno", message:"Enjoying Node.js" };
node> var data = { topic: "message", data: msg };
node> var encoded = encodeURI(JSON.stringify(data));
node> require("fs").writeFileSync("chapp.txt", encoded);
node> Ctrl-d
$ curl -d `cat chapp.txt` http://localhost:8000/comet

When you enter that last command, you should get an immediate response (i.e.,
it simply returns to your prompt) and the shell that is running the server should
output “cjno: Enjoying Node.js.” In Chapter 15, TDD and DOM Manipulation: The
Chat Client, we will build a proper frontend for the application.

 From the Library of WoweBook.Com

ptg

358 Server-Side JavaScript with Node.js

14.3 Domain Model and Storage
The domain model of the chat application will consist of a single chatRoom object
for the duration of our exercise. chatRoom will simply store messages in memory,
but we will design it following Node’s I/O conventions.

14.3.1 Creating a Chat Room
As with the controller, we will rely on Object.create to create new objects
inheriting from chatRoom. However, until proved otherwise, chatRoom does
not need an initializer, so we can simply create objects with Object.create

directly. Should we decide to add an initializer at a later point, we must update the
places that create chat room objects in the tests, which should be a good motivator
to keep from duplicating the call.

14.3.2 I/O in Node
Because the chatRoom interface will take the role as the storage backend, we
classify it as an I/O interface. This means it should follow Node’s carefully thought
out conventions for asynchronous I/O, even if it’s just an in-memory store for now.
Doing so allows us to very easily refactor to use a persistence mechanism, such as a
database or web service, at a later point.

In Node, asynchronous interfaces accept an optional callback as their last ar-
gument. The first argument passed to the callback is always either null or an error
object. This removes the need for a dedicated “errback” function. Listing 14.28
shows an example using the file system module.

Listing 14.28 Callback and errback convention in Node

var fs = require("fs");

fs.rename("./tetx.txt", "./text.txt", function (err) {
if (err) {
throw err;

}

// Renamed successfully, carry on
});

This convention is used for all low-level system interfaces, and it will be our
starting point as well.

 From the Library of WoweBook.Com

ptg

14.3 Domain Model and Storage 359

14.3.3 Adding Messages
As dictated by the controller using it, the chatRoom object should have an ad-

dMessage method that accepts a username and a message.

14.3.3.1 Dealing with Bad Data

For basic data consistency, the addMessage method should err if either the user-
name or message is missing. However, as an asynchronous I/O interface, it cannot
simply throw exceptions. Rather, we will expect errors to be passed as the first ar-
gument to the callback registered with addMessage, as is the Node way. Listing
14.29 shows the test for missing username. Save it in test/chapp/chat_room_

test.js.

Listing 14.29 addMessage should require username

var testCase = require("nodeunit").testCase;
var chatRoom = require("chapp/chat_room");

testCase(exports, "chatRoom.addMessage", {
"should require username": function (test) {

var room = Object.create(chatRoom);

room.addMessage(null, "a message", function (err) {
test.isNotNull(err);
test.inherits(err, TypeError);
test.done();

});
}

});

The test fails as expected, and so we add a check on the user parameter, as
Listing 14.30 shows.

Listing 14.30 Checking the username

var chatRoom = {
addMessage: function (user, message, callback) {

if (!user) {
callback(new TypeError("user is null"));

}
}

};

 From the Library of WoweBook.Com

ptg

360 Server-Side JavaScript with Node.js

The test passes, and we can move on to checking the message. The test in
Listing 14.31 expects addMessage to require a message.

Listing 14.31 addMessage should require message

"should require message": function (test) {
var room = Object.create(chatRoom);

room.addMessage("cjno", null, function (err) {
test.isNotNull(err);
test.inherits(err, TypeError);
test.done();

});
}

The test introduces some duplication that we’ll deal with shortly. First,
Listing 14.32 makes the check that passes it.

Listing 14.32 Checking the message

addMessage: function (user, message, callback) {
/* ... */

if (!message) {
callback(new TypeError("message is null"));

}
}

All the tests pass. Listing 14.33 adds a setUpmethod to remove the duplicated
creation of the chatRoom object.

Listing 14.33 Adding a setUp method

testCase(exports, "chatRoom.addMessage", {
setUp: function () {
this.room = Object.create(chatRoom);

},

/* ... */
});

As we decided previously, the callback should be optional, so Listing 14.34 adds
a test that expects the method not to fail when the callback is missing.

 From the Library of WoweBook.Com

ptg

14.3 Domain Model and Storage 361

Listing 14.34 Expecting addMessage not to require a callback

/* ... */
require("function-bind");

/* ... */

testCase(exports, "chatRoom.addMessage", {
/* ... */

"should not require a callback": function (test) {
test.noException(function () {
this.room.addMessage();
test.done();

}.bind(this));
}

}

Once again we load the custom bind implementation to bind the anonymous
callback to test.noException. To pass the test we need to check that the
callback is callable before calling it, as Listing 14.35 shows.

Listing 14.35 Verifying that callback is callable before calling it

addMessage: function (user, message, callback) {
var err = null;

if (!user) { err = new TypeError("user is null"); }
if (!message) { err = new TypeError("message is null"); }

if (typeof callback == "function") {
callback(err);

}
}

14.3.3.2 Successfully Adding Messages

We won’t be able to verify that messages are actually stored until we have a way
to retrieve them, but we should get some indication on whether or not adding the
message was successful. To do this we’ll expect the method to call the callback with
a message object. The object should contain the data we passed in along with an id.
The test can be seen in Listing 14.36.

 From the Library of WoweBook.Com

ptg

362 Server-Side JavaScript with Node.js

Listing 14.36 Expecting addMessage to pass the created message

"should call callback with new object": function (test) {
var txt = "Some message";

this.room.addMessage("cjno", txt, function (err, msg) {
test.isObject(msg);
test.isNumber(msg.id);
test.equals(msg.message, txt);
test.equals(msg.user, "cjno");
test.done();

});
}

Listing 14.37 shows an attempt at passing the test. It calls the callback with an
object and cheats the id by hard-coding it to 1.

Listing 14.37 Passing the object to the callback

addMessage: function (user, message, callback) {
/* ... */
var data;

if (!err) {
data = { id: 1, user: user, message: message };

}

if (typeof callback == "function") {
callback(err, data);

}
}

With this in place, the tests are back to green. Next up, the id should be unique
for every message. Listing 14.38 shows the test.

Listing 14.38 Expecting unique message ids

"should assign unique ids to messages": function (test) {
var user = "cjno";

this.room.addMessage(user, "a", function (err, msg1) {
this.room.addMessage(user, "b", function (err, msg2) {

test.notEquals(msg1.id, msg2.id);
test.done();

});
}.bind(this));

}

 From the Library of WoweBook.Com

ptg

14.3 Domain Model and Storage 363

The test exposes our cheat, so we need to find a better way to generate ids.
Listing 14.39 uses a simple variable that is incremented each time a message is
added.

Listing 14.39 Assigning unique integer ids

var id = 0;

var chatRoom = {
addMessage: function (user, message, callback) {

/* ... */

if (!err) {
data = { id: id++, user: user, message: message };

}

/* ... */
}

};

Tests are passing again. You might worry that we’re not actually storing the
message anywhere. That is a problem, but it’s not currently being addressed by the
test case. To do so we must start testing message retrieval.

14.3.4 Fetching Messages
In the next chapter we will interface with the chat backend using the comet-

Client from Chapter 13, Streaming Data with Ajax and Comet. This means that
chatRoom needs some way to retrieve all messages since some token. We’ll add a
getMessagesSince method that accepts an id and yields an array of messages
to the callback.

14.3.4.1 The getMessagesSince Method

The initial test for this method in Listing 14.40 adds two messages, then tries to
retrieve all messages since the id of the first. This way we don’t program any as-
sumptions about how the ids are generated into the tests.

Listing 14.40 Testing message retrieval

testCase(exports, "chatRoom.getMessagesSince", {
"should get messages since given id": function (test) {

var room = Object.create(chatRoom);
var user = "cjno";

 From the Library of WoweBook.Com

ptg

364 Server-Side JavaScript with Node.js

room.addMessage(user, "msg", function (e, first) {
room.addMessage(user, "msg2", function (e, second) {
room.getMessagesSince(first.id, function (e, msgs) {
test.isArray(msgs);
test.same(msgs, [second]);
test.done();

});
});

});
}

});

The test fails in the face of a missing getMessagesSince. Listing 14.41 adds
an empty method that simply calls the callback without arguments.

Listing 14.41 Adding getMessagesSince

var chatRoom = {
addMessage: function (user, message, callback) { /* ... */ },

getMessagesSince: function (id, callback) {
callback();

}
};

Because addMessage isn’t really storing the messages anywhere, there’s no
way for getMessagesSince to retrieve it. In other words, to pass this test we
need to fix addMessage, like Listing 14.42 shows.

Listing 14.42 Actually adding messages

addMessage: function (user, message, callback) {
/* ... */

if (!err) {
if (!this.messages) {

this.messages = [];
}

var id = this.messages.length + 1;
data = { id: id, user: user, message: message };
this.messages.push(data);

}

/* ... */
}

 From the Library of WoweBook.Com

ptg

14.3 Domain Model and Storage 365

Now that we have an array to store messages in, we can retrieve ids from the
array’s length instead of keeping a dedicated counter around. The id adds one
to the length to make it 1-based rather than 0-based. The reason for this is that
getMessagesSince is supposed to retrieve all messages added after some id.
Using 0-based ids we’d have to call this method with -1 to get all messages, rather
than the slightly more natural looking 0. It’s just a matter of preference, you may
disagree with me.

Running the tests confirms that all the previous tests are still passing. As ids
are now directly related to the length of the messages array, retrieval is trivial as
Listing 14.43 shows.

Listing 14.43 Fetching messages

getMessagesSince: function (id, callback) {
callback(null, this.messages.slice(id));

}

And just like that, all the tests, including the one test forgetMessagesSince,
pass.getMessagesSince helped us properly implementaddMessage, and the
best case situation is now covered. However, there are a few more cases to fix for it
to work reliably.

• It should yield an empty array if the messages array does not exist.

• It should yield an empty array if no relevant messages exist.

• It could possibly not throw exceptions if no callback is provided.

• The test cases for addMessage and getMessagesSince should be
refactored to share setup methods.

Testing and implementing these additional cases is left as an exercise.

14.3.4.2 Making addMessage Asynchronous

The addMessage method, although callback-based, is still a synchronous inter-
face. This is not necessarily a problem, but there is a possibility that someone
using the interface spins off some heavy lifting in the callback, inadvertently caus-
ing addMessage to block. To alleviate the problem we can utilize Node’s pro-
cess.nextTick(callback) method, which calls its callback on the next pass
of the event loop. First, Listing 14.44 tests for the desired behavior.

 From the Library of WoweBook.Com

ptg

366 Server-Side JavaScript with Node.js

Listing 14.44 Expecting addMessage to be asynchronous

"should be asynchronous": function (test) {
var id;

this.room.addMessage("cjno", "Hey", function (err, msg) {
id = msg.id;

});

this.room.getMessagesSince(id - 1, function (err, msgs) {
test.equals(msgs.length, 0);
test.done();

});
}

This test fails because the method indeed is synchronous at this point.
Listing 14.45 updates addMessage to utilize the nextTick method.

Listing 14.45 Making addMessage asynchronous

require("function-bind");
var id = 0;

var chatRoom = {
addMessage: function (user, message, callback) {
process.nextTick(function () {

/* ... */
}.bind(this));

},

/* ... */
}

The test now passes. However, it only passes because getMessagesSince
is still synchronous. The moment we make this method asynchronous as well (as we
should), the test will not pass. That leaves us with checking the messages array
directly. Testing implementation details is usually frowned upon, as it ties the tests
too hard to the implementation. I think the test for the asynchronous behavior falls
under the same category; thus, I’d rather remove that test than to add yet another
one that digs inside the implementation.

 From the Library of WoweBook.Com

ptg

14.4 Promises 367

14.4 Promises
One of the biggest challenges of working exclusively with asynchronous interfaces
lies in deeply nested callbacks; any task that requires the result of asynchronous
calls to be processed in order must be nested to ensure ordered execution. Not only
is deeply nested code ugly and cumbersome to work with, it also presents a more
grave problem; nested calls cannot benefit from the possibility of parallel execution,
a bad trade-off to enable ordered processing.

We can untangle nested callbacks using promises. A promise is a representation
of an eventual value and it offers an elegant way of working with asynchronous code.
When an asynchronous method uses promises, it does not accept a callback, but
rather returns a promise, an object representing the eventual fulfillment of that call.
The returned object is observable, allowing calling code to subscribe to success and
error events on it.

When the original call that spawned the promise finishes, it calls the promise’s
resolve method, which causes its success callback to fire. Similarly, in the event
that a call failed, the promise offers the reject method, which can be passed an
exception.

Using promises means that we don’t have to nest callbacks unless we truly
depend on calls to occur in succession; thus, we gain more flexibility. For example,
we can issue a host of asynchronous calls and have them execute in parallel, but use
promises to group and process the results in any order we wish.

Node no longer comes with a promise API, but Kris Zyp has a nice imple-
mentation4 that implements his proposal for a CommonJS Promise specification.
The version used in this book is available from the book’s website.5 Download it to
deps/node-promise.

14.4.1 Refactoring addMessage to Use Promises
We will refactor theaddMessagemethod to use promises. As we refactor, it is vital
that we run the tests between each step, and always keep them passing, to be sure we
didn’t break anything. Changing the way a method works can be done by keeping
the old behavior until the new behavior is in place and all tests have been updated.

The fact that we can carry out a refactoring like this—changing fundamen-
tal behavior—without worrying about breaking the application, is one of the true
benefits of a good test suite.

4. http://github.com/kriszyp/node-promise
5. http://tddjs.com

 From the Library of WoweBook.Com

http://github.com/kriszyp/node-promise
http://tddjs.com

ptg

368 Server-Side JavaScript with Node.js

14.4.1.1 Returning a Promise

We will start refactoring by introducing a new test, one that expects addMessage
to return a promise object, seen in Listing 14.46.

Listing 14.46 Expecting addMessage to return a promise

testCase(exports, "chatRoom.addMessage", {
/* ... */

"should return a promise": function (test) {
var result = this.room.addMessage("cjno", "message");

test.isObject(result);
test.isFunction(result.then);
test.done();

}
});

Notice that I assume you’ve solved the exercise from before; the test case
should now be using a setup method to create a chatRoom object, available in
this.room.

The test fails as the method is currently not returning an object. We’ll fix that
by returning an empty promise object, as in Listing 14.47.

Listing 14.47 Returning an empty promise object

require("function-bind");
var Promise = require("node-promise/promise").Promise;
var id = 0;

var chatRoom = {
addMessage: function (user, message, callback) {
process.nextTick(function () {

/* ... */
}.bind(this));

return new Promise();
},

/* ... */
};

 From the Library of WoweBook.Com

ptg

14.4 Promises 369

14.4.1.2 Rejecting the Promise

Next up, we’ll start changing the original tests to work with promises. The first test
we wrote expectsaddMessage to call the callback, passing an error if no username
is passed to it. The updated test can be seen in Listing 14.48.

Listing 14.48 Using the returned promise

"should require username": function (test) {
var promise = this.room.addMessage(null, "message");

promise.then(function () {}, function (err) {
test.isNotNull(err);
test.inherits(err, TypeError);
test.done();

});
}

The promise has a then method, which allows consumers to add callbacks to
be called when it is fulfilled. It accepts one or two functions; the first function is the
success callback and the second is the error callback. Another way of doing this is
to use the addCallback and addErrback methods, but I like the way “then”
reads: addMessage(user, msg).then(callback).

To pass this test, we need to duplicate some efforts in addMessage, as we’re
not yet ready to drop the old implementation. Listing 14.49 shows the updated
method.

Listing 14.49 Updating addMessage

addMessage: function (user, message, callback) {
var promise = new Promise();

process.nextTick(function () {
/* ... */

if (err) {
promise.reject(err, true);

}
}.bind(this));

return promise;
}

Here we call the promise’s reject method, passing it an error. Normally,
the promise will throw an exception if reject is called and no error handler is

 From the Library of WoweBook.Com

ptg

370 Server-Side JavaScript with Node.js

registered. Because the remaining tests have not yet been updated to use the promise,
and because we previously decided that not handling the error was permissible, we
pass in true as the second argument to suppress this behavior. The test passes.

The next test is similar to the one we just fixed, only it verifies that leaving out the
message causes an error. Passing this test using a promise does not require further
modification of addMessage, so I will leave updating the test as an exercise.

14.4.1.3 Resolving the Promise

The next significant test to update is the one that asserts that the newly added
message object is passed to the callback. This test only requires a small change.
Because the promise has separate success and failure handlers, we can remove the
error parameter to the callback. The test can be seen in Listing 14.50.

Listing 14.50 Expecting the promise to emit success

"should call callback with new object": function (test) {
var txt = "Some message";

this.room.addMessage("cjno", txt).then(function (msg) {
test.isObject(msg);
test.isNumber(msg.id);
test.equals(msg.message, txt);
test.equals(msg.user, "cjno");
test.done();

});
}

Updating the implementation is a matter of calling the promise’s resolve
method, as seen in Listing 14.51.

Listing 14.51 Resolving with the message

addMessage: function (user, message, callback) {
var promise = new Promise()

process.nextTick(function () {
/* ... */

if (!err) {
/* ... */
this.messages.push(data);
promise.resolve(data);

}

 From the Library of WoweBook.Com

ptg

14.4 Promises 371

/* ... */
}.bind(this));

return promise;
}

Yet another converted test passes. Converting the remaining tests should be
fairly straightforward, so I will leave doing so as an exercise. Once all the tests have
been updated, we need to decide whether or not we should remove the callback.
Keeping it will allow users to decide which pattern they prefer to use, but it also
means more code to maintain on our part. Because the promise handles all the
callbacks for us, removing the manual callback means we don’t need to concern
ourselves with whether or not it was passed, if it’s callable, and so on. I recommend
relying solely on the promises.

14.4.2 Consuming Promises
Now that the addMessagemethod uses promises we can simplify code that needs
to add more than one message. For instance, the test that asserts that each message
is given its own unique id originally used nested callbacks to add two messages and
then compare them. Node-promise offers an all function, which accepts any
number of promises and returns a new promise. This new promise emits success
once all the promises are fulfilled. We can use this to write the unique id test in
another way, as seen in Listing 14.52.

Listing 14.52 Grouping promises with all

/* ... */
var all = require("node-promise/promise").all;

/* ... */

testCase(exports, "chatRoom.addMessage", {
/* ... */

"should assign unique ids to messages": function (test) {
var room = this.room;
var messages = [];
var collect = function (msg) { messages.push(msg); };

var add = all(room.addMessage("u", "a").then(collect),
room.addMessage("u", "b").then(collect));

 From the Library of WoweBook.Com

ptg

372 Server-Side JavaScript with Node.js

add.then(function () {
test.notEquals(messages[0].id, messages[1].id);
test.done();

});
},

/* ... */
});

For consistency, the getMessagesSince method should be updated to use
promises as well. I will leave doing so as yet another exercise. Try to make sure you
never fail more than one test at a time while refactoring. When you’re done you
should end up with something like Listing 14.53.

Listing 14.53 getMessagesSince using promises

getMessagesSince: function (id) {
var promise = new Promise();

process.nextTick(function () {
promise.resolve((this.messages || []).slice(id));

}.bind(this));

return promise;
}

14.5 Event Emitters
When the client polls the server for new messages, one of two things can happen.
Either new messages are available, in which case the request is responded to and
ended immediately, or the server should hold the request until messages are ready.
So far we’ve covered the first case, but the second case, the one that enables long
polling, is not yet covered.

chatRoom will provide a waitForMessagesSince method, which works
just like the getMessagesSince method; except if no messages are available, it
will idly wait for some to become available. In order to implement this, we need
chatRoom to emit an event when new messages are added.

14.5.1 Making chatRoom an Event Emitter
The first test to verify that chatRoom is an event emitter is to test that it has the
addListener and emit methods, as Listing 14.54 shows.

 From the Library of WoweBook.Com

ptg

14.5 Event Emitters 373

Listing 14.54 Expecting chatRoom to be event emitter

testCase(exports, "chatRoom", {
"should be event emitter": function (test) {

test.isFunction(chatRoom.addListener);
test.isFunction(chatRoom.emit);
test.done();

}
});

We can pass this test by popping EventEmitter.prototype in as chat-
Room’s prototype, as seen in Listing 14.55.

Listing 14.55 chatRoom inheriting from EventEmitter.prototype

/* ... */
var EventEmitter = require("events").EventEmitter;
/* ... */

var chatRoom = Object.create(EventEmitter.prototype);

chatRoom.addMessage = function (user, message) {/* ... */};
chatRoom.getMessagesSince = function (id) {/* ... */};

Note that because V8 fully supports ECMAScript 5’s Object.create, we
could have used property descriptors to add the methods as well, as seen in
Listing 14.56.

Listing 14.56 chatRoom defined with property descriptors

var chatRoom = Object.create(EventEmitter.prototype, {
addMessage: {

value: function (user, message) {
/* ... */

}
},

getMessagesSince: {
value: function (id) {
/* ... */

}
}

});

 From the Library of WoweBook.Com

ptg

374 Server-Side JavaScript with Node.js

At this point the property descriptors don’t provide anything we have a doc-
umented need for (i.e., the ability to override default property attribute values),
so we’ll avoid the added indentation and stick with the simple assignments in
Listing 14.55.

Next up, we make sure that addMessage emits an event. Listing 14.57 shows
the test.

Listing 14.57 Expecting addMessage to emit a “message” event

testCase(exports, "chatRoom.addMessage", {
/* ... */

"should emit 'message' event": function (test) {
var message;

this.room.addListener("message", function (m) {
message = m;

});

this.room.addMessage("cjno", "msg").then(function (m) {
test.same(m, message);
test.done();

});
}

});

To pass this test we need to place a call to emit right before we resolve the
promise, as seen in Listing 14.58.

Listing 14.58 Emitting a message event

chatRoom.addMessage= function (user, message, callback) {
var promise = new Promise()

process.nextTick(function () {
/* ... */

if (!err) {
/* ... */
this.emit("message", data);
promise.resolve(data);

} else {
promise.reject(err, true);

}

 From the Library of WoweBook.Com

ptg

14.5 Event Emitters 375

}.bind(this));

return promise;
};

With the event in place, we can build thewaitForMessagesSincemethod.

14.5.2 Waiting for Messages
The waitForMessagesSincemethod will do one of two things; if messages are
available since the provided id, the returned promise will resolve immediately. If no
messages are currently available, the method will add a listener for the “message”
event, and the returned promise will resolve once a new message is added.

The test in Listing 14.59 expects that the promise is immediately resolved if
messages are available.

Listing 14.59 Expecting available messages to resolve immediately

/* ... */
var Promise = require("node-promise/promise").Promise;
var stub = require("stub");
/* ... */

testCase(exports, "chatRoom.waitForMessagesSince", {
setUp: chatRoomSetup,

"should yield existing messages": function (test) {
var promise = new Promise();
promise.resolve([{ id: 43 }]);
this.room.getMessagesSince = stub(promise);

this.room.waitForMessagesSince(42).then(function (m) {
test.same([{ id: 43 }], m);
test.done();

});
}

});

This test stubs the getMessagesSince method to verify that its results are
used if there are any. To pass this test we can simply return the promise returned
from getMessagesSince, as seen in Listing 14.60.

 From the Library of WoweBook.Com

ptg

376 Server-Side JavaScript with Node.js

Listing 14.60 Proxying getMessagesSince

chatRoom.waitForMessagesSince = function (id) {
return this.getMessagesSince(id);

};

Now to the interesting part. If the attempt to fetch existing methods does not
succeed, the method should add a listener for the “message” event and go to sleep.
Listing 14.61 tests this by stubbing addListener.

Listing 14.61 Expecting the wait method to add a listener

"should add listener when no messages": function (test) {
this.room.addListener = stub();
var promise = new Promise();
promise.resolve([]);
this.room.getMessagesSince = stub(promise);

this.room.waitForMessagesSince(0);

process.nextTick(function () {
test.equals(this.room.addListener.args[0], "message");
test.isFunction(this.room.addListener.args[1]);
test.done();

}.bind(this));
}

Again we stub the getMessagesSince method to control its output. We
then resolve the promise it’s stubbed to return, passing an empty array. This
should cause the waitForMessagesSince method to register a listener for
the “message” event. Seeing as waitForMessagesSince does not add a lis-
tener, the test fails. To pass it, we need to change the implementation as seen in
Listing 14.62.

Listing 14.62 Adding a listener if no messages are available

chatRoom.waitForMessagesSince = function (id) {
var promise = new Promise();

this.getMessagesSince(id).then(function (messages) {
if (messages.length > 0) {

promise.resolve(messages);
} else {

this.addListener("message", function () {});
}

 From the Library of WoweBook.Com

ptg

14.5 Event Emitters 377

}.bind(this));

return promise;
};

The listener we just added is empty, as we don’t yet have a test that tells us what
it needs to do. That seems like a suitable topic for the next test, which will assert
that adding a message causes waitForMessagesSince to resolve with the new
message. For symmetry with getMessagesSince, we expect the single message
to arrive as an array. Listing 14.63 shows the test.

Listing 14.63 Adding a message should resolve waiting requests

"new message should resolve waiting": function (test) {
var user = "cjno";
var msg = "Are you waiting for this?";

this.room.waitForMessagesSince(0).then(function (msgs) {
test.isArray(msgs);
test.equals(msgs.length, 1);
test.equals(msgs[0].user, user);
test.equals(msgs[0].message, msg);
test.done();

});

process.nextTick(function () {
this.room.addMessage(user, msg);

}.bind(this));
}

Unsurprisingly, the test does not pass, prompting us to fill in the “message”
listener we just added. Listing 14.64 shows the working listener.

Listing 14.64 Implementing the message listener

/* ... */

this.addListener("message", function (message) {
promise.resolve([message]);

});

/* ... */

And that’s all it takes, the tests all pass, and our very rudimentary data layer is
complete enough to serve its purpose in the application. Still, there is one very im-
portant task to complete, and one that I will leave as an exercise. Once the promise

 From the Library of WoweBook.Com

ptg

378 Server-Side JavaScript with Node.js

returned from waitForMessagesSince is resolved, the listener added to the
“message” event needs to be cleared. Otherwise, the original call to waitForMes-
sagesSincewill have its callback called every time a message is added, even after
the current request has ended.

To do this you will need a reference to the function added as a handler,
and use this.removeListener. To test it, it will be helpful to know that
room.listeners() returns the array of listeners, for your inspection pleasure.

14.6 Returning to the Controller
With a functional data layer we can get back to finishing the controller. We’re going
to give post the final polish and implement get.

14.6.1 Finishing the post Method
The post method currently responds with the 201 status code, regardless of
whether the message was added or not, which is in violation with the seman-
tics of a 201 response; the HTTP spec states that “The origin server MUST cre-
ate the resource before returning the 201 status code.” Having implemented the
addMessage method we know that this is not necessarily the case in our current
implementation. Let’s get right on fixing that.

The test that expectspost to callwriteHead needs updating. We now expect
the headers to be written once the addMessage method resolves. Listing 14.65
shows the updated test.

Listing 14.65 Expecting post to respond immediately when addMessage
resolves

/* ... */
var Promise = require("node-promise/promise").Promise;
/* ... */

function controllerSetUp() {
/* ... */
var promise = this.addMessagePromise = new Promise();
this.controller.chatRoom = { addMessage: stub(promise) };
/* ... */

}

/* ... */

testCase(exports, "chatRoomController.post", {

 From the Library of WoweBook.Com

ptg

14.6 Returning to the Controller 379

/* ... */

"should write status header when addMessage resolves":
function (test) {
var data = { data: { user: "cjno", message: "hi" } };

this.controller.post();
this.sendRequest(data);
this.addMessagePromise.resolve({});

process.nextTick(function () {
test.ok(this.res.writeHead.called);
test.equals(this.res.writeHead.args[0], 201);
test.done();

}.bind(this));
},

/* ... */
});

Delaying the verification doesn’t affect the test very much, so the fact that
it still passes only tells us none of the new setup code is broken. We can apply
the same update to the following test, which expects the connection to be closed.
Listing 14.66 shows the updated test.

Listing 14.66 Expecting post not to close connection immediately

"should close connection when addMessage resolves":
function (test) {
var data = { data: { user: "cjno", message: "hi" } };
this.controller.post();
this.sendRequest(data);
this.addMessagePromise.resolve({});

process.nextTick(function () {
test.ok(this.res.end.called);
test.done();

}.bind(this));
}

Listing 14.67 shows a new test, which contradicts the two tests the way they
were previously written. This test specifically expects the action not to respond
before addMessage has resolved.

 From the Library of WoweBook.Com

ptg

380 Server-Side JavaScript with Node.js

Listing 14.67 Expecting post not to respond immediately

"should not respond immediately": function (test) {
this.controller.post();
this.sendRequest({ data: {} });

test.ok(!this.res.end.called);
test.done();

}

This test does not run as smoothly as the previous two. Passing it is a matter
of deferring the closing calls until the promise returned by addMessage resolves.
Listing 14.68 has the lowdown.

Listing 14.68 post responds when addMessage resolves

post: function () {
/* ... */

this.request.addListener("end", function () {
var data = JSON.parse(decodeURI(body)).data;

this.chatRoom.addMessage(
data.user, data.message

).then(function () {
this.response.writeHead(201);
this.response.end();

}.bind(this));
}.bind(this));

}

That’s about it for the post method. Note that the method does not handle
errors in any way; in fact it will respond with a 201 status even if the message was
not added successfully. I’ll leave fixing it as an exercise.

14.6.2 Streaming Messages with GET
GET requests should either be immediately responded to with messages, or held
open until messages are available. Luckily, we did most of the heavy lifting while
implementingchatRoom.waitForMessagesSince, so thegetmethod of the
controller will simply glue together the request and the data.

 From the Library of WoweBook.Com

ptg

14.6 Returning to the Controller 381

14.6.2.1 Filtering Messages with Access Tokens

Remember how the cometClient from Chapter 13, Streaming Data with Ajax
and Comet, informs the server of what data to retrieve? We set it up to use the
X-Access-Token header, which can contain any value and is controlled by the
server. Because we built waitForMessagesSince to use ids, it should not come
as a surprise that we are going to track progress using them.

When a client connects for the first time, it’s going to send an empty
X-Access-Token, so handling that case seems like a good start. Listing 14.69
shows the test for the initial attempt. We expect the controller to simply return all
available messages on first attempt, meaning that empty access token should imply
waiting for messages since 0.

Listing 14.69 Expecting the client to grab all messages

testCase(exports, "chatRoomController.get", {
setUp: controllerSetUp,
tearDown: controllerTearDown,

"should wait for any message": function (test) {
this.req.headers = { "x-access-token": "" };
var chatRoom = this.controller.chatRoom;
chatRoom.waitForMessagesSince = stub();

this.controller.get();

test.ok(chatRoom.waitForMessagesSince.called);
test.equals(chatRoom.waitForMessagesSince.args[0], 0);
test.done();

}
});

Notice that Node downcases the headers. Failing to recognize this may take
away some precious minutes from your life. Or so I’ve heard. To pass this test we
can cheat by passing the expected id directly to the method, as Listing 14.70 does.

Listing 14.70 Cheating to pass tests

var chatRoomController = {
/* ... */

get: function () {
this.chatRoom.waitForMessagesSince(0);

}
};

 From the Library of WoweBook.Com

ptg

382 Server-Side JavaScript with Node.js

The test passes. Onward to the subsequent requests, which should be coming
in with an access token. Listing 14.71 stubs the access token with an actual value,
and expects this to be passed to waitForMessagesSince.

Listing 14.71 Expecting get to pass the access token

"should wait for messages since X-Access-Token":
function (test) {
this.req.headers = { "x-access-token": "2" };
var chatRoom = this.controller.chatRoom;
chatRoom.waitForMessagesSince = stub();

this.controller.get();

test.ok(chatRoom.waitForMessagesSince.called);
test.equals(chatRoom.waitForMessagesSince.args[0], 2);
test.done();

}

This test looks a lot like the previous one, only it expects the passed id to be
the same as provided with the X-Access-Token header. These tests could need
some cleaning up, and I encourage you to give them a spin. Passing the test is simple,
as Listing 14.72 shows.

Listing 14.72 Passing the access token header

get: function () {
var id = this.request.headers["x-access-token"] || 0;
this.chatRoom.waitForMessagesSince(id);

}

14.6.2.2 The respond Method

Along with the response body, which should be a JSON response of some kind, the
get method should also send status code and possibly some response headers, and
finally close the connection. This sounds awfully similar to what post is currently
doing. We’ll extract the response into a new method in order to reuse it with theget
request. Listing 14.73 shows two test cases for it, copied from the post test case.

Listing 14.73 Initial tests for respond

testCase(exports, "chatRoomController.respond", {
setUp: controllerSetUp,

"should write status code": function (test) {
this.controller.respond(201);

 From the Library of WoweBook.Com

ptg

14.6 Returning to the Controller 383

test.ok(this.res.writeHead.called);
test.equals(this.res.writeHead.args[0], 201);
test.done();

},

"should close connection": function (test) {
this.controller.respond(201);

test.ok(this.res.end.called);
test.done();

}
});

We can pass these tests by copying the two lines we last added to post into
the new respond method, as Listing 14.74 shows.

Listing 14.74 A dedicated respond method

var chatRoomController = {
/* ... */

respond: function (status) {
this.response.writeHead(status);
this.response.end();

}
};

Now we can simplify the post method by calling this method instead. Doing
so also allows us to merge the original tests for status code and connection closing,
by stubbing respond and asserting that it was called.

14.6.2.3 Formatting Messages

Next up for the get method is properly formatting messages. Again we’ll need to
lean on the cometClient, which defines the data format. The method should
respond with a JSON object whose properties name the topic and values are arrays
of objects. Additionally, the JSON object should include a token property. The
JSON string should be written to the response body.

We can formulate this as a test by stubbing respond as we did before, this
time expecting an object passed as the second argument. Thus, we will need to
embellish respond later, having it write its second argument to the response body
as a JSON string. Listing 14.75 shows the test.

 From the Library of WoweBook.Com

ptg

384 Server-Side JavaScript with Node.js

Listing 14.75 Expecting an object passed to respond

function controllerSetUp() {
var req = this.req = new EventEmitter();
req.headers = { "x-access-token": "" };

/* ... */

var add = this.addMessagePromise = new Promise();
var wait = this.waitForMessagesPromise = new Promise();

this.controller.chatRoom = {
addMessage: stub(add),
waitForMessagesSince: stub(wait)

};

/* ... */
}

/* ... */

testCase(exports, "chatRoomController.respond", {
/* ... */

"should respond with formatted data": function (test) {
this.controller.respond = stub();
var messages = [{ user: "cjno", message: "hi" }];
this.waitForMessagesPromise.resolve(messages);

this.controller.get();

process.nextTick(function () {
test.ok(this.controller.respond.called);
var args = this.controller.respond.args;
test.same(args[0], 201);
test.same(args[1].message, messages);
test.done();

}.bind(this));
}

});

This test is a bit of a mouthful, and to make it slightly easier to digest, thesetUp
method was augmented. All the tests so far have stubbed waitForMessagesS-
ince, and all of them require the headers to be set. Pulling these out makes it easier
to focus on what the test in question is trying to achieve.

 From the Library of WoweBook.Com

ptg

14.6 Returning to the Controller 385

The test resolves the promise returned by waitForMessagesSince, and
expects the resolving data to be wrapped in a cometClient friendly object and
passed to the resolve method along with a 200 status. Listing 14.76 shows the
required code to pass the test.

Listing 14.76 Responding from get

get: function () {
var id = this.request.headers["x-access-token"] || 0;
var wait = this.chatRoom.waitForMessagesSince(id);

wait.then(function (msgs) {
this.respond(200, { message: msgs });

}.bind(this));
}

14.6.2.4 Updating the Token

Along with the messages, the get method needs to embed a token in its response.
The token will automatically be picked up by cometClient and sent with the
X-Access-Tokenheader on subsequent requests. Listing 14.77 expects the token
to be passed along with the message.

Listing 14.77 Expecting a token embedded in the response

"should include token in response": function (test) {
this.controller.respond = stub();
this.waitForMessagesPromise.resolve([{id:24}, {id:25}]);

this.controller.get();

process.nextTick(function () {
test.same(this.controller.respond.args[1].token, 25);
test.done();

}.bind(this));
}

Passing the test involves passing the id of the last message as the token as seen
in Listing 14.78.

Listing 14.78 Embedding the token

get: function () {
/* ... */

wait.then(function (messages) {

 From the Library of WoweBook.Com

ptg

386 Server-Side JavaScript with Node.js

this.respond(200, {
message: messages,
token: messages[messages.length - 1].id

});
}.bind(this));

}

14.6.3 Response Headers and Body
The final missing piece of the puzzle is encoding the response data as JSON and
writing the response body. I will leave TDD-ing these features into the respond
method as a last exercise for this chapter. For completeness, Listing 14.79 shows
one possible outcome of the respond method.

Listing 14.79 The respond method

respond: function (status, data) {
var strData = JSON.stringify(data) || "{}";

this.response.writeHead(status, {
"Content-Type": "application/json",
"Content-Length": strData.length

});

this.response.write(strData);
this.response.end();

}

And that’s it! To take the application for a spin, we can launch another command
line session, as Listing 14.80 shows.

Listing 14.80 Manually testing the finished app from the command line

$ node-repl
node> var msg = { user:"cjno", message:"Enjoying Node.js" };
node> var data = { topic: "message", data: msg };
node> var encoded = encodeURI(JSON.stringify(data));
node> require("fs").writeFileSync("chapp.txt", encoded);
node> Ctrl-d
$ curl -d `cat chapp.txt` http://localhost:8000/comet
$ curl http://localhost:8000/comet
{"message":[{"id":1,"user":"cjno",\
"message":"Enjoying Node.js"}],"token":1}

 From the Library of WoweBook.Com

ptg

14.7 Summary 387

14.7 Summary
In this chapter we have gotten to know Node.js, asynchronous I/O for V8 JavaScript,
and we have practiced JavaScript TDD outside the browser to see how the expe-
rience from previous exercises fares in a completely different environment than
we’re used to. By building a small web server to power a chat application we have
gotten to know Node’s HTTP, Assert, and Event APIs in addition to the third party
node-promise library.

To provide the application with data, we also built an I/O interface that first
mimicked Node’s conventional use of callbacks and later went through a detailed
refactoring exercise to convert it to use promises. Promises offer an elegant way
of working with asynchronous interfaces, and makes concurrency a lot easier, even
when we need to work with results in a predictable order. Promises are usable in any
JavaScript setting, and the Ajax tools seems particularly fit for this style of interface.

In the next chapter we will use the tools built in Chapter 12, Abstracting Browser
Differences: Ajax, and Chapter 13, Streaming Data with Ajax and Comet, to build
a client for the Node backend, resulting in a completely usable in-browser instant
chat application.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

15TDD and DOM
Manipulation:

The Chat Client

Developing client-side JavaScript includes a fair amount of DOM manipulation.
In this chapter we will use test-driven development to implement a client for the
chat backend we developed in Chapter 14, Server-Side JavaScript with Node.js. By
doing so we will see how to apply the techniques we have learned so far to test DOM
manipulation and event handling.

The DOM is an API just like any other, which means that testing it should be
fairly straightforward so long as we adhere to the single responsibility principle and
keep components loosely coupled. The DOM does potentially present a challenge
in that it consists entirely of host objects, but as we will see, we can work around
the potential problems.

15.1 Planning the Client
The task at hand is building a simple chat GUI. The resulting application will have
two views: when the user enters the application she will be presented with a form in
which to enter the desired username. Submitting the form will remove it and display
a list of messages and a form to enter new ones in its place. As usual, we will keep
the scope at a minimum to get through the entire exercise, so for example, there
will be no cookie management to remember the user. Throughout the chapter ideas
on how to add more features to the client will be suggested as exercises.

389

 From the Library of WoweBook.Com

ptg

390 TDD and DOM Manipulation: The Chat Client

15.1.1 Directory Structure
Again, we will use JsTestDriver to run the tests. The client will eventually use all
the code developed throughout Part III, Real-World Test-Driven Development in
JavaScript, but we will start with a bare minimum and add in dependencies as they
are required. For the TDD session, some of the dependencies will always be stubbed,
meaning we won’t need them to develop the client. Listing 15.1 shows the initial
directory structure.

Listing 15.1 Initial directory structure

chris@laptop:~/projects/chat_client$ tree
.
|-- jsTestDriver.conf
|-- lib
| |-- stub.js
| `-- tdd.js
|-- src
`-- test

stub.js contains thestubFn function from Chapter 13, Streaming Data with
Ajax and Comet, and tdd.js contains the tddjs object along with the various
tools built in Part II, JavaScript for Programmers, Listing 15.2 shows the contents
of the jsTestDriver.conf configuration file. As usual, you can download the
initial project state from the book’s website.1

Listing 15.2 The initial JsTestDriver configuration

server: http://localhost:4224

load:
- lib/*.js
- src/*.js
- test/*.js

15.1.2 Choosing the Approach
Prior to launching the TDD session we need a general idea on how we’re going
to build the client. Our main priorities are to keep a clear separation between the
DOM and the data (provided by cometClient from Chapter 13, Streaming Data

1. http://tddjs.com

 From the Library of WoweBook.Com

http://tddjs.com

ptg

15.1 Planning the Client 391

with Ajax and Comet) and to control all dependencies from the outside, i.e., using
dependency injection. To achieve this we will employ a derivative of the Model-View-
Controller (MVC) design pattern frequently referred to as Model-View-Presenter
(MVP), which is very well suited to facilitate unit testing and fits well with test-driven
development.

15.1.2.1 Passive View

MVP is practiced in a variety of ways and we will apply it in a manner that leans to-
ward what Martin Fowler, renowned programmer, author, and thinker, calls Passive
View. In this model, the view notifies the presenter—controller in Passive View—
of user input, and the controller completely controls the state of the view. The
controller responds to events in the view and manipulates the underlying model.

In a browser setting, the DOM is the view. For the chat application the model
will be provided by the cometClient object, and our main task is to develop the
controllers. Note the plural form; there are many controllers, each discrete widget
or even widget component can be represented by its own view and controller,
sometimes referred to as an MVP axis. This makes it easy to adhere to the single
responsibility principle, in which each object has one well-defined task. Throughout
this chapter we will refer to a controller/view duo as a component.

We will divide the chat client into three distinct components: the user form, the
message list, and the message form. The message list and form will not be displayed
until the user form is successfully completed. However, this flow will be controlled
from the outside, as controllers will not be aware of other controllers. Keeping them
completely decoupled means we can more easily manipulate the client by adding or
removing components, and it makes them easier to test.

15.1.2.2 Displaying the Client

We need some DOM elements to display the components. To keep the scope man-
ageable within the confines of a single chapter, we’re going to manually write the
required markup in the HTML file that serves the application.

The client is not going to make any sense to users without JavaScript, or without
a sufficiently capable JavaScript engine. To avoid presenting the user with controls
they cannot meaningfully use, we will initially hide all the chat related markup, and
have the individual controllers append the “js-chat” class name to the various ele-
ments used by the client. This way we can use CSS to display elements as JavaScript
enhances them.

 From the Library of WoweBook.Com

ptg

392 TDD and DOM Manipulation: The Chat Client

15.2 The User Form
The user form is in charge of collecting the user’s desired chat name. As the server
currently has no concept of connected users, it does not need to validate the user
name in any way, i.e., two users may be online at the same time using the same
name. The controller requires a DOM form element as its view, and expects this to
contain at least one text input, from which it will read the username when the form
is submitted.

When the form is submitted, the controller will assign the user to a property of
the model object, to make it available to the rest of the application. Then it will emit
an event, allowing other parts of the application to act on the newly arrived user.

15.2.1 Setting the View
The first task is to set the view, i.e., assign the DOM element that is the visual
representation of the component.

15.2.1.1 Setting Up the Test Case

We start by setting up the test case and adding the first test, which expects user-
FormController to be an object. Listing 15.3 shows the initial test case. Save it
in test/user_form_controller_test.js.

Listing 15.3 Expecting the object to exist

(function () {
var userController = tddjs.chat.userFormController;

TestCase("UserFormControllerTest", {
"test should be object": function () {

assertObject(userController);
}

});
}());

Listing 15.4 passes the test by setting up the userFormController object.
Save the listing in src/user_form_controller.js.

Listing 15.4 Defining the controller

tddjs.namespace("chat").userFormController = {};

 From the Library of WoweBook.Com

ptg

15.2 The User Form 393

The next test, shown in Listing 15.5, expects setView to be a function.

Listing 15.5 Expecting setView to be a function

"test should have setView method": function () {
assertFunction(userController.setView);

}

Listing 15.6 adds an empty method to pass the test.

Listing 15.6 Adding an empty setView method

(function () {
function setView(element) {}

tddjs.namespace("chat").userFormController = {
setView: setView

};
}());

15.2.1.2 Adding a Class

The first actual behavior we’ll test for is that the “js-chat” class name is added
to the DOM element, as seen in Listing 15.7. Note that the test requires
the Object.create implementation from Chapter 7, Objects and Prototypal
Inheritance, in lib/object.js to run smoothly across browsers.

Listing 15.7 Expecting the view to have its class name set

TestCase("UserFormControllerSetViewTest", {
"test should add js-chat class": function () {

var controller = Object.create(userController);
var element = {};

controller.setView(element);

assertClassName("js-chat", element);
}

});

The first thing that sticks out about this test is that it contains no DOM elements.
It does, however, use theassertClassName assertion, which checks if an element
has the given class name. This assertion is generic, and only checks that the object
defines a string property className and that one of its space separated values
matches the provided string.

 From the Library of WoweBook.Com

ptg

394 TDD and DOM Manipulation: The Chat Client

The element object is a simple stub object. At this point there’s no need to
use a real DOM element, because all we want to check is that some property was
assigned.

The test fails, and Listing 15.8 assigns the class name to pass it.

Listing 15.8 Adding the class

function setView(element) {
element.className = "js-chat";

}

At this point you might worry about a few things. Should we really be overriding
the class name like that? Should the class name not be configurable? Remember:
You ain’t gonna need it! At this point, we have no use case demonstrating the need
to use an element that already has class names or the need to use another class
name than “js-chat.” Once we have, we can jot down a few tests to document those
requirements, and then we can implement them. Right now we don’t need them,
and they’ll just be slowing us down.

15.2.1.3 Adding an Event Listener

Next we will add an event listener to the form’s “submit” event. To do this, we
will use the tddjs.dom.addEventHandler interface we wrote in Chapter 10,
Feature Detection. Testing event handlers is commonly accepted as a challenging
task. The main reasons being that triggering user events from script in a cross-
browser manner is less than trivial, and tests need a lot of setup, thus they can easily
become complex.

Unit testing event handlers in application code, when done right, is in
fact trivial. Attaching event handlers through an abstraction such as tddjs.

dom.addEventHandler means that all we need to assert is that this method
is called correctly. By stubbing it, we gain access to the arguments passed to it,
which means that we can manually call the handler to test the behavior of the event
handler (in another dedicated test case). Tests that rely heavily on event data, such as
mouse coordinates, neighbouring elements, and less tangible data may require com-
plex setup, but such setup can be hidden behind, e.g., a fake event implementation
for use in tests.

I’m not saying that you should not test event handlers end-to-end, but I am
saying that the application unit test suite is unlikely the right place to do so. First,
one would hope that whatever library is being used to add event listeners has its
own comprehensive test suite, meaning that in your tests you should be able to
trust it. Second, if your application has acceptance tests, or some kind of in-browser

 From the Library of WoweBook.Com

ptg

15.2 The User Form 395

integration tests, those are good places to test end-to-end functionality, including
DOM event handlers. We will return briefly to this topic in Chapter 17, Writing
Good Unit Tests.

As there is no need to add an actual DOM event listener while testing, we can
simply stub addEventHandler in the tests. Listing 15.9 shows the first test.

Listing 15.9 Expect the element’s submit event to be handled

"test should handle submit event": function () {
var controller = Object.create(userController);
var element = {};
var dom = tddjs.namespace("dom");
dom.addEventHandler = stubFn();

controller.setView(element);

assert(dom.addEventHandler.called);
assertSame(element, dom.addEventHandler.args[0]);
assertEquals("submit", dom.addEventHandler.args[1]);
assertFunction(dom.addEventHandler.args[2]);

}

As we have not yet included addEventHandler as a dependency, we use the
namespace method to retrieve or define the dom namespace before stubbing the
addEventHandler method. The test fails, and Listing 15.10 adds the method
call to pass it.

Listing 15.10 Adding a submit event handler

var dom = tddjs.namespace("dom");

function setView(element) {
element.className = "js-chat";
dom.addEventHandler(element, "submit", function () {});

}

Once again, we use the namespace method to avoid trouble. Using local
aliases to reduce typing and speed up identifier resolution is useful, but also causes
objects to be cached before we use them. Because the source files are loaded first,
the tddjs.dom object is not available when we assign it to the local dom variable.
However, by the time the test triggers the call to dom.addEventHandler, the
test has filled in the blanks. Using the namespace method means both files refer
to the same object without us having to worry about which one loaded first.

 From the Library of WoweBook.Com

ptg

396 TDD and DOM Manipulation: The Chat Client

Running the test produces some disappointing results. The test passes, but
unfortunately the previous test now breaks, as there is no addEventHandler

method around at the point of running it. We can fix this and the duplicated test
code by elevating some common code into a setUp method, as Listing 15.11
shows.

Listing 15.11 Extracting code into setUp

/* ... */
var dom = tddjs.namespace("dom");
/* ... */

TestCase("UserFormControllerSetViewTest", {
setUp: function () {
this.controller = Object.create(userController);
this.element = {};
dom.addEventHandler = stubFn();

},

"test should add js-chat class": function () {
this.controller.setView(this.element);

assertClassName("js-chat", this.element);
},

"test should handle submit event": function () {
this.controller.setView(this.element);

assert(dom.addEventHandler.called);
assertSame(this.element, dom.addEventHandler.args[0]);
assertEquals("submit", dom.addEventHandler.args[1]);
assertFunction(dom.addEventHandler.args[2]);

}
});

Even though both tests usesetView in the same way, we keep it out ofsetUp,
because this call is not part of the setup, rather it is the exercise step of the test.
Refactoring the test got the tests back on track, and they now both pass.

For the next test, we need to verify that the event handler is bound to the
controller object. To achieve this we need stubFn to record the value of this at
call time. Listing 15.12 shows the updated function.

 From the Library of WoweBook.Com

ptg

15.2 The User Form 397

Listing 15.12 Recording this in stubFn

function stubFn(returnValue) {
var fn = function () {

fn.called = true;
fn.args = arguments;
fn.thisValue = this;
return returnValue;

};

fn.called = false;

return fn;
}

The next test, seen in Listing 15.13, uses the improved stubFn to assert that
the event handler is the controller’s handleSubmitmethod, readily bound to the
controller object.

Listing 15.13 Expecting the event handler to be handleSubmit bound
to controller

"test should handle event with bound handleSubmit":
function () {
var stub = this.controller.handleSubmit = stubFn();

this.controller.setView(this.element);
dom.addEventHandler.args[2]();

assert(stub.called);
assertSame(this.controller, stub.thisValue);

}

This test shows another reason for not elevating thesetView call to thesetUp
method; here we need additional setup before calling it, to be sure the method
uses the stubbed handleSubmit method—not the original one, which would
fail our test indefinitely. Listing 15.14 updates the call to pass the test. Note that
the implementation requires the bind implementation from Chapter 6, Applied
Functions and Closures, in lib/function.js.

 From the Library of WoweBook.Com

ptg

398 TDD and DOM Manipulation: The Chat Client

Listing 15.14 Binding handleSubmit as event handler

function setView(element) {
element.className = "js-chat";
var handler = this.handleSubmit.bind(this);
dom.addEventHandler(element, "submit", handler);

}

We now pass the current test but again fail previous tests. The reason is that the
controller does not actually define a handleSubmit method; thus, any test that
does not stub it fails. The fix is easy enough; define the method on the controller.
Listing 15.15 to the rescue.

Listing 15.15 Adding an empty handleSubmit method

/* ... */

function handleSubmit(event) {
}

tddjs.namespace("chat").userFormController = {
setView: setView,
handleSubmit: handleSubmit

};

That’s the happy path for setView. It should also do basic error checking, at
the very least verify that it receives an argument. I’ll leave doing so as an exercise.

15.2.2 Handling the Submit Event
When the user submits the form, the handler should grab the value from the form’s
first input element whose type is text, assign it to the model’s currentUser
property, and then remove the “js-chat” class name, signifying end of life for the
user component. Last, but not least, the handler needs to abort the event’s default
action to avoid the browser actually posting the form.

15.2.2.1 Aborting the Default Action

We’ll start with that last requirement; the event’s default action should be prevented.
In standards compliant browsers, this is done by calling the preventDefault
method on the event object as Listing 15.16 shows. Internet Explorer does not
support this method, and rather requires the event handler to return false. However,
as you might remember, addEventHandler from Chapter 10, Feature Detection,
takes care of some basic event normalization to smooth things over for us.

 From the Library of WoweBook.Com

ptg

15.2 The User Form 399

Listing 15.16 Expecting the event’s preventDefault method to be called

TestCase("UserFormControllerHandleSubmitTest", {
"test should prevent event default action": function () {

var controller = Object.create(userController);
var event = { preventDefault: stubFn() };

controller.handleSubmit(event);

assert(event.preventDefault.called);
}

});

Again we put our trust in a stubbed function. Passing this test requires a single
line of added code, as Listing 15.17 shows.

Listing 15.17 Preventing the default action

function handleSubmit(event) {
event.preventDefault();

}

Now that the test passes, we can start worrying about duplicating setup between
the two test cases. As usual, we’ll simply extract the setup to a local function that
both test cases can share, as Listing 15.18 shows.

Listing 15.18 Sharing setup

function userFormControllerSetUp() {
this.controller = Object.create(userController);
this.element = {};
dom.addEventHandler = stubFn();

}

TestCase("UserFormControllerSetViewTest", {
setUp: userFormControllerSetUp,

/* ... */
});

TestCase("UserFormControllerHandleSubmitTest", {
setUp: userFormControllerSetUp,

"test should prevent event default action": function () {
var event = { preventDefault: stubFn() };

 From the Library of WoweBook.Com

ptg

400 TDD and DOM Manipulation: The Chat Client

this.controller.handleSubmit(event);

assert(event.preventDefault.called);
}

});

15.2.2.2 Embedding HTML in Tests

Next up is verifying that the model is updated with the username as entered in
an input element. How will we provide an input element in the test? Basically
we have two choices; continue stubbing, e.g., by giving the stub element a stub
getElementsByTagName method, which returns a stub input element, or
embed some markup in the test.

Although the former approach works and allows us to completely control both
direct and indirect inputs to the method under test, it increases the risk of stubs
not matching reality, and for anything other than trivial cases requires us to write a
whole lot of stubs. Embedding some markup in the test will keep the tests closer
to the production environment, and at the same time requires less manual stub-
bing. Additionally, by adding the user form inside the test case, the test case better
documents how to use the controller.

JsTestDriver provides two ways to include HTML in a test; in-memory elements
and elements added to the document. Listing 15.19 shows a test that creates some
HTML that is not attached to the document.

Listing 15.19 Embedding HTML in a JsTestDriver test

"test should embed HTML": function () {
/*:DOC element = <div></div> */

assertEquals("div", this.element.tagName.toLowerCase());
}

As you can see, the name before the equals sign names the property JsTestDriver
should assign the resulting DOM element to. It’s important to note that the right
side of the equals sign needs to nest elements inside a single root element. It can
contain an arbitrarily complex structure, but there can only be one root node. The
other way to include HTML in tests is by appending to the document, as Listing
15.20 illustrates.

 From the Library of WoweBook.Com

ptg

15.2 The User Form 401

Listing 15.20 Appending elements to the document

"test should append HTML to document": function () {
/*:DOC += <div id="myDiv"></div> */
var div = document.getElementById("myDiv");

assertEquals("div", div.tagName.toLowerCase());
}

For the most part, not appending to the document is both slightly faster and
more convenient, because JsTestDriver automatically assigns it to a property on the
test case. Unless we need to pick up elements globally (e.g., by selecting them from
the document) or need elements to render, there usually is no gain in appending the
elements to the document.

15.2.2.3 Getting the Username

Returning to the controller, the problem at hand is expecting handleSubmit to
pick up what the user entered in the form’s first text input field and using it as the
username. To do this, we’ll first remove the element stub we’ve been using so far,
and use an actual form instead. Listing 15.21 shows the updated setUp.

Listing 15.21 Embedding a user form in setUp

function userFormControllerSetUp() {
/*:DOC element = <form>

<fieldset>
<label for="username">Username</label>
<input type="text" name="username" id="username">
<input type="submit" value="Enter">

</fieldset>
</form> */

this.controller = Object.create(userController);
dom.addEventHandler = stubFn();

}

Running the test confirms that we’re still in the green. With an actual form in
place, we can add the test that expects handleSubmit to read the input field, as
seen in Listing 15.22.

Listing 15.22 Expecting handleSubmit to read username from field

"test should set model.currentUser": function () {
var model = {};

 From the Library of WoweBook.Com

ptg

402 TDD and DOM Manipulation: The Chat Client

var event = { preventDefault: stubFn() };
var input = this.element.getElementsByTagName("input")[0];
input.value = "cjno";
this.controller.setModel(model);
this.controller.setView(this.element);

this.controller.handleSubmit(event);

assertEquals("cjno", model.currentUser);
}

The test adds a stub model object with the so far non-existent setModel
method. The fact that the method is missing causes the test to fail, so Listing 15.23
adds the method.

Listing 15.23 Adding setModel

/* ... */

function setModel(model) {
this.model = model;

}

tddjs.namespace("chat").userFormController = {
setView: setView,
setModel: setModel,
handleSubmit: handleSubmit

};

One could argue that a simple setter such as this is superfluous, but providing
setView and setModelmethods makes the interface consistent and predictable.
When ECMAScript 5 becomes widely supported, we can do one better by using
native setters, which untangles the explicit method calls.

Next up, we need to make the handleSubmit method actually pick up the
current value of the input field. Listing 15.24 fills in the blanks.

Listing 15.24 Picking up the username

function handleSubmit(event) {
event.preventDefault();

var input = this.view.getElementsByTagName("input")[0];
this.model.currentUser = input.value;

}

 From the Library of WoweBook.Com

ptg

15.2 The User Form 403

Still no luck. To make matters worse, adding that line actually failed the previous
test as well, because it didn’t set a view. We can fix that by checking that the view
is set before asking it for elements, as Listing 15.25 does.

Listing 15.25 Checking that this.view is available

function handleSubmit(event) {
event.preventDefault();

if (this.view) {
var input = this.view.getElementsByTagName("input")[0];
this.model.currentUser = input.value;

}
}

That gets the previous test back to green, but the current test still fails. It turns
out that setView doesn’t actually, well, set the view. Listing 15.26 fixes setView.

Listing 15.26 Storing a reference to the view

function setView(element) {
/* ... */
this.view = element;

}

And with that, all tests pass. We can now tend to the test case, which currently
duplicates some effort. Both of the tests create a stubbed event object, which can
and should be elevated to setUp. Listing 15.27 shows the updated setUp.

Listing 15.27 Stubbing event in setUp

function userFormControllerSetUp() {
/* ... */

this.event = { preventDefault: stubFn() };
}

15.2.2.4 Notifying Observers of the User

Once the user has been set, the controller should notify any observers. Listing 15.28
tests this by observing the event, handling the event and asserting that the observer
was called.

 From the Library of WoweBook.Com

ptg

404 TDD and DOM Manipulation: The Chat Client

Listing 15.28 Expecting handleSubmit to notify observers

"test should notify observers of username": function () {
var input = this.element.getElementsByTagName("input")[0];
input.value = "Bullrog";
this.controller.setModel({});
this.controller.setView(this.element);
var observer = stubFn();

this.controller.observe("user", observer);
this.controller.handleSubmit(this.event);

assert(observer.called);
assertEquals("Bullrog", observer.args[0]);

}

That test should trigger all kinds of duplication alarms. Don’t worry, we’ll
get on fixing it shortly. As expected, the test fails because the controller has no
observe method. To fix this, we can extend the controller with tddjs.util.

observable. For this to work we need to fetch theobservable implementation
from Chapter 11, The Observer Pattern, in lib/observable.js. Furthermore,
because lib/tdd.js always needs to load before any of the other modules, we
must also update jsTestDriver.conf, as Listing 15.29 shows.

Listing 15.29 Updated jsTestDriver.conf

server: http://localhost:4224

load:
- lib/tdd.js
- lib/*.js
- src/*.js
- test/*.js

Plumbing aside, we can now update the controller implementation, as seen in
Listing 15.30.

Listing 15.30 Making userFormController observable

(function () {
var dom = tddjs.namespace("dom");
var util = tddjs.util;
var chat = tddjs.namespace("chat");

/* ... */

 From the Library of WoweBook.Com

ptg

15.2 The User Form 405

chat.userFormController = tddjs.extend({}, util.observable);
chat.userFormController.setView = setView;
chat.userFormController.setModel = setModel;
chat.userFormController.handleSubmit = handleSubmit;

}());

With the controller now observable, we can make it notify its observers for the
“user” event, as Listing 15.31 shows.

Listing 15.31 Notifying “user” observers

function handleSubmit(event) {
event.preventDefault();

if (this.view) {
var input = this.view.getElementsByTagName("input")[0];
this.model.currentUser = input.value;
this.notify("user", input.value);

}
}

The tests pass. However, the two last tests share an awful lot in common, and
to keep duplication at bay we will elevate some common setup code. Listing 15.32
shows the updated test case.

Listing 15.32 Elevating shared test setup

TestCase("UserFormControllerHandleSubmitTest", {
setUp: function () {

userFormControllerSetUp.call(this);
this.input =
this.element.getElementsByTagName("input")[0];

this.model = {};
this.controller.setModel(this.model);
this.controller.setView(this.element);

},

/* ... */
});

The previous test case doesn’t really need any of the new setup, and in fact some
of it would interfere with its tests. To still be able to use the shared setup, we add a
setup specific to the test that calls the shared setup with the test case as this and
then adds more setup code.

 From the Library of WoweBook.Com

ptg

406 TDD and DOM Manipulation: The Chat Client

15.2.2.5 Removing the Added Class

The final requirement for the user form controller is removing the “js-chat” class
name once a user is successfully set. Listing 15.33 shows the initial test.

Listing 15.33 Expecting the class to be removed upon completion

"test should remove class when successful": function () {
this.input.value = "Sharuhachi";

this.controller.handleSubmit(this.event);

assertEquals("", this.element.className);
}

To pass the test, we simply reset the class name if a user name was found. Listing
15.34 shows the updated handleSubmit.

Listing 15.34 Resetting the view’s class

function handleSubmit(event) {
event.preventDefault();

if (this.view) {
var input = this.view.getElementsByTagName("input")[0];
var userName = input.value;
this.view.className = "";
this.model.currentUser = userName;
this.notify("user", userName);

}
}

15.2.2.6 Rejecting Empty Usernames

If the user submits the form without entering a username, the chat client will fail
upon trying to post messages, because the server won’t allow empty user names. In
other words, allowing an empty username from the user form controller will cause
an error in completely unrelated parts of the code, which could be fairly hard to
debug. Listing 15.35 expects the controller not to set an empty username.

Listing 15.35 Expecting handleSubmit not to notify with empty username

"test should not notify observers of empty username":
function () {
var observer = stubFn();

 From the Library of WoweBook.Com

ptg

15.2 The User Form 407

this.controller.observe("user", observer);

this.controller.handleSubmit(this.event);

assertFalse(observer.called);
}

Passing this test requires a check on the value of the input field, as seen in
Listing 15.36.

Listing 15.36 Disallowing empty usernames

function handleSubmit(event) {
event.preventDefault();

if (this.view) {
var input = this.view.getElementsByTagName("input")[0];
var userName = input.value;

if (!userName) {
return;

}

/* ... */
}

}

The method also should not remove the “js-chat” class name if the username
was empty. The method clearly could benefit from notifying the user of the error as
well. As an exercise, I encourage you to add tests for and implement these additional
cases.

15.2.3 Feature Tests
With that, the user form controller is complete enough to provide the happy path.
It clearly could do with more resilient error handling and I strongly encourage you
to pick up doing so as exercises. One final touch we will add to the controller before
moving on is a set of feature tests to decide if the controller can be supported.

To add proper feature tests we need the actual event implementation as a
dependency, because the controller will require its existence at define time. Save
the addEventHandler implementation from Chapter 10, Feature Detection, in
lib/event.js. Listing 15.37 shows the controller including feature tests.

 From the Library of WoweBook.Com

ptg

408 TDD and DOM Manipulation: The Chat Client

Listing 15.37 Feature tests for userFormController

(function () {
if (typeof tddjs == "undefined" ||

typeof document == "undefined") {
return;

}

var dom = tddjs.dom;
var util = tddjs.util;
var chat = tddjs.namespace("chat");

if (!dom || !dom.addEventHandler || !util ||
!util.observable || !Object.create ||
!document.getElementsByTagName ||
!Function.prototype.bind) {

return;
}

/* ... */
}());

Note that because the tests aren’t storing a reference to addEventHandler
before stubbing and restoring it in tearDown as we did before, we are effectively
overwriting it for the entire test suite. In this particular case this isn’t a problem,
because none of the tests will register actual DOM event handlers.

When you have added the above feature tests, you need to have the event utilities
from Chapter 10, Feature Detection, in tdd.js for the tests to pass, because the
controller will not be defined if its dependencies are not available.

15.3 Using the Client with the Node.js Backend
Having successfully completed one of three client components, we will add some
plumbing to the “chapp” Node application from Chapter 14, Server-Side JavaScript
with Node.js, to have it serve the client. As a low-level runtime, Node does not
have a concept of serving static files through its http server module. Doing so
requires matching the request’s URL to a file on disk and streaming it to the client.
Implementing this is well outside the scope of this chapter, so instead we will use
a module by Felix Geisendörfer called node-paperboy.2 A version guaranteed to

2. http://github.com/felixge/node-paperboy

 From the Library of WoweBook.Com

http://github.com/felixge/node-paperboy

ptg

15.3 Using the Client with the Node.js Backend 409

work with the code in the book can be downloaded from the book’s website.3 Place
it in chapp’s deps directory.

Listing 15.38 loads the module in chapp’s lib/server.js. It’s set up to
serve files from the public directory, e.g., http://localhost:8000/index.html will
attempt to serve public/index.html.

Listing 15.38 Adding static file serving to chapp’s server

/* ... */
var paperboy = require("node-paperboy");

module.exports = http.createServer(function (req, res) {
if (url.parse(req.url).pathname == "/comet") {

/* ... */
} else {

var delivery = paperboy.deliver("public", req, res);

delivery.otherwise(function () {
res.writeHead(404, { "Content-Type": "text/html" });
res.write("<h1>Nothing to see here, move along</h1>");
res.close();

});
}

});

The otherwise callback is triggered if no file is found in public matching
the requested URL. In that case we serve up a really tiny 404 page. To serve up the
chat client, create public/js, and copy over the following files:

• tdd.js

• observable.js

• function.js

• object.js

• user form controller.js

Save Listing 15.39 in public/index.html.

Listing 15.39 The client HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

3. http://tddjs.com

 From the Library of WoweBook.Com

http://localhost:8000/index.htmlwillattempttoservepublic/index.html
http://localhost:8000/index.html willattempt oservepublic/index.html.
http://tddjs.com

ptg

410 TDD and DOM Manipulation: The Chat Client

<html lang="en">
<head>
<meta http-equiv="content-type"

content="text/html; charset=utf-8">
<title>Chapp JavaScript Chat</title>
<link type="text/css" rel="stylesheet"

media="screen, projection" href="css/chapp.css">
</head>
<body>
<h1>Chapp JavaScript Chat</h1>
<form id="userForm">

<fieldset>
<label for="name">Name:</label>
<input type="text" name="name" id="name"

autocomplete="off">
<input type="submit" value="Join">

</fieldset>
</form>
<script type="text/javascript"

src="js/function.js"></script>
<script type="text/javascript"

src="js/object.js"></script>
<script type="text/javascript" src="js/tdd.js"></script>
<script type="text/javascript"

src="js/observable.js"></script>
<script type="text/javascript"

src="js/user_form_controller.js"></script>
<script type="text/javascript"

src="js/chat_client.js"></script>
</body>

</html>

Save the very simple stylesheet in Listing 15.40 inpublic/css/chapp.css.

Listing 15.40 The initial CSS file

form { display: none; }
.js-chat { display: block; }

Finally, save the bootstrapping script in Listing 15.41 in
public/js/chat_client.js.

Listing 15.41 The initial bootstrap script

(function () {
if (typeof tddjs == "undefined" ||

typeof document == "undefined" ||
!document.getElementById || !Object.create ||

 From the Library of WoweBook.Com

ptg

15.4 The Message List 411

!tddjs.namespace("chat").userFormController) {
alert("Browser is not supported");
return;

}

var chat = tddjs.chat;
var model = {};
var userForm = document.getElementById("userForm");
var userController =

Object.create(chat.userFormController);
userController.setModel(model);
userController.setView(userForm);

userController.observe("user", function (user) {
alert("Welcome, " + user);

});
}());

Now start the server and bring up http://localhost:8000/ in your browser of
choice. You should be presented with an unstyled form. Upon submitting it, the
browser should alert you with a greeting and hide the form. It’s not much, but it’s
working code, and having a working testbed for the client means we can easily take
new components for a spin as they are completed.

15.4 The Message List
The message list will consist of a definition list, in which messages are represented
by a dt element containing the user and a dd element containing the message. The
controller will observe the model’s “message” channel to receive messages, and will
build DOM elements and inject them into the view. As with the user form controller,
it will add the “js-chat” class to the view when it is set.

15.4.1 Setting the Model
For this controller, we will start by adding the model object. In contrast to the user
form controller, the message list will need to do more than simply assign the model.

15.4.1.1 Defining the Controller and Method

Listing 15.42 shows the initial test case that asserts that the controller exists. Save it
in test/message_list_controller_test.js.

 From the Library of WoweBook.Com

http://localhost:8000/inyourbrowserofchoice

ptg

412 TDD and DOM Manipulation: The Chat Client

Listing 15.42 Expecting messageListController to be an object

(function () {
var listController = tddjs.chat.messageListController;

TestCase("MessageListControllerTest", {
"test should be object": function () {

assertObject(listController);
}

});
}());

To pass the test, create lib/message_list_controller.js and save it
with the contents of Listing 15.43.

Listing 15.43 Defining messageListController

(function () {
var chat = tddjs.namespace("chat");
chat.messageListController = {};

}());

Next, we expect the controller to have a setModel method, as seen in Listing
15.44.

Listing 15.44 Expecting setModel to be a function

"test should have setModel method": function () {
assertFunction(listController.setModel);

}

Listing 15.45 adds an empty method.

Listing 15.45 Adding an empty setModel

function setModel(model) {}

chat.messageListController = {
setModel: setModel

};

15.4.1.2 Subscribing to Messages

setModel needs to observe the model’s “message” channel. Remember, in pro-
duction, the model object will be a cometClient that streams messages from the
server. Listing 15.46 expects observe to be called.

 From the Library of WoweBook.Com

ptg

15.4 The Message List 413

Listing 15.46 Expecting setModel to observe the “message” channel

TestCase("MessageListControllerSetModelTest", {
"test should observe model's message channel":
function () {

var controller = Object.create(listController);
var model = { observe: stubFn() };

controller.setModel(model);

assert(model.observe.called);
assertEquals("message", model.observe.args[0]);
assertFunction(model.observe.args[1]);

}
});

The test fails, and Listing 15.47 helps passing it by making the call to observe.

Listing 15.47 Calling observe

function setModel(model) {
model.observe("message", function () {});

}

Next, we’ll expect the handler to be a bound addMessage method, much
like we did with the DOM event handler in the user form controller. Listing 15.48
shows the test.

Listing 15.48 Expecting a bound addMessage as “message” handler

TestCase("MessageListControllerSetModelTest", {
setUp: function () {

this.controller = Object.create(listController);
this.model = { observe: stubFn() };

},

/* ... */

"test should observe with bound addMessage": function () {
var stub = this.controller.addMessage = stubFn();

this.controller.setModel(this.model);
this.model.observe.args[1]();

assert(stub.called);

 From the Library of WoweBook.Com

ptg

414 TDD and DOM Manipulation: The Chat Client

assertSame(this.controller, stub.thisValue);
}

});

I jumped the gun slightly on this one, immediately recognizing that asetUpwas
required to avoid duplicating the test setup code. The test should look eerily familiar
because it basically mimics the test we wrote to verify thatuserFormController
observed the submit event with a bound handleSubmit method.

Listing 15.49 adds the correct handler to model.observe. What are your
expectations as to the result of running the tests?

Listing 15.49 Observing the “message” channel with a bound method

function setModel(model) {
model.observe("message", this.addMessage.bind(this));

}

If you expected the test to pass, but the previous test to fail, then you’re abso-
lutely right. As before, we need to add the method we’re binding to the controller,
to keep tests that aren’t stubbing it from failing. Listing 15.50 adds the method.

Listing 15.50 Adding an empty addMessage

/* ... */
function addMessage(message) {}

chat.messageListController = {
setModel: setModel,
addMessage: addMessage

};

Before we can move on to test the addMessage method, we need to add a
view, because addMessage’s main task is to build DOM elements to inject into
it. As before, we’re turning a blind eye to everything but the happy path. What
happens if someone calls setModel without an object? Or with an object that
does not support observe? Write a few tests, and update the implementation as
you find necessary.

15.4.2 Setting the View
With the experience we gained while developing the user form controller, we will
use DOM elements in place of fake objects right from the start while developing
setView for the list controller. Listing 15.51 verifies that the method adds the
“js-chat” class to the view element.

 From the Library of WoweBook.Com

ptg

15.4 The Message List 415

Listing 15.51 Expecting setView to set the element’s class

function messageListControllerSetUp() {
/*:DOC element = <dl></dl> */

this.controller = Object.create(listController);
this.model = { observe: stubFn() };

}

TestCase("MessageListControllerSetModelTest", {
setUp: messageListControllerSetUp,
/* ... */

});

TestCase("MessageListControllerSetViewTest", {
setUp: messageListControllerSetUp,

"test should set class to js-chat": function () {
this.controller.setView(this.element);

assertClassName("js-chat", this.element);
}

});

We’ve danced the extract setup dance enough times now that hopefully the
above listing should not be too frightening. Even though parts of the TDD process
do become predictable after awhile, it’s important to stick to the rhythm. No matter
how obvious some feature may seem, we should be extremely careful about adding it
until we can prove we really need it. Remember, You Ain’t Gonna Need It. Keeping
to the rhythm ensures neither production code nor tests are any more complicated
than what they need to be.

The test fails because the setView method does not exist. Listing 15.52 adds
it and passes the test in one fell swoop.

Listing 15.52 Adding a compliant setView method

function setView(element) {
element.className = "js-chat";

}

chat.messageListController = {
setModel: setModel,
setView: setView,
addMessage: addMessage

};

 From the Library of WoweBook.Com

ptg

416 TDD and DOM Manipulation: The Chat Client

That’s it for now. We’ll need the method to actually store the view as well, but
preferably without poking at its implementation. Also, currently there is no need to
store it, at least not until we need to use it in another context.

15.4.3 Adding Messages
Onwards to the heart and soul of the controller; receiving messages, building DOM
elements for them, and injecting them into the view. The first thing we will test
for is that a dt element containing the user prefixed with an “@” is added to the
definition list, as Listing 15.53 shows.

Listing 15.53 Expecting the user to be injected into the DOM in a dt element

TestCase("MessageListControllerAddMessageTest", {
setUp: messageListControllerSetUp,

"test should add dt element with @user": function () {
this.controller.setModel(this.model);
this.controller.setView(this.element);

this.controller.addMessage({
user: "Eric",
message: "We are trapper keeper"

});

var dts = this.element.getElementsByTagName("dt");
assertEquals(1, dts.length);
assertEquals("@Eric", dts[0].innerHTML);

}
});

The test adds a message and then expects the definition list to have gained a dt
element. To pass the test we need to build an element and append it to the view, as
Listing 15.54 shows.

Listing 15.54 Adding the user to the list

function addMessage(message) {
var user = document.createElement("dt");
user.innerHTML = "@" + message.user;
this.view.appendChild(user);

}

Boom! Test fails; this.view is undefined. There we go, a documented
need for the view to be kept in a property. Listing 15.55 fixes setView to store a
reference to the element.

 From the Library of WoweBook.Com

ptg

15.4 The Message List 417

Listing 15.55 Storing a reference to the view element

function setView(element) {
element.className = "js-chat";
this.view = element;

}

With a reference to the view in place, all the tests pass. That leaves the message,
which should be added to the DOM as well. Listing 15.56 shows the test.

Listing 15.56 Expecting the message to be added to the DOM

TestCase("MessageListControllerAddMessageTest", {
setUp: function () {

messageListControllerSetUp.call(this);
this.controller.setModel(this.model);
this.controller.setView(this.element);

},

/* ... */

"test should add dd element with message": function () {
this.controller.addMessage({
user: "Theodore",
message: "We are one"

});

var dds = this.element.getElementsByTagName("dd");
assertEquals(1, dds.length);
assertEquals("We are one", dds[0].innerHTML);

}
});

Again, some test setup code was immediately elevated to the setUp method,
to keep the goal of the test obvious. To pass this test, we basically just need to repeat
the three lines from before, changing the text content and tag name. Listing 15.57
has the lowdown.

Listing 15.57 Adding the message as a dd element

function addMessage(message) {
/* ... */
var msg = document.createElement("dd");
msg.innerHTML = message.message;
this.view.appendChild(msg);

}

 From the Library of WoweBook.Com

ptg

418 TDD and DOM Manipulation: The Chat Client

The server currently does not filter messages in any way. To avoid users ef-
fortlessly hijacking the chat client, we will add one test that expects any messages
including HTML to be escaped, as seen in Listing 15.58.

Listing 15.58 Expecting basic cross site scripting protection

"test should escape HTML in messages": function () {
this.controller.addMessage({
user: "Dr. Evil",
message: "<script>window.alert('p4wned!');</script>"

});

var expected = "<script>window.alert('p4wned!');" +
"</script>";

var dd = this.element.getElementsByTagName("dd")[1];
assertEquals(expected, dd.innerHTML);

}

The test fails; no one is stopping Dr. Evil from having his way with the chat
client. Listing 15.59 adds basic protection against script injection.

Listing 15.59 Adding basic XSS protection

function addMessage(message) {
/* ... */
msg.innerHTML = message.message.replace(/</g, "<");
this.view.appendChild(msg);

}

15.4.4 Repeated Messages From Same User
Before we get going on the message form controller, we will add one more test. If we
receive multiple messages in a row from the same user, we will expect the controller
to not repeat the user. In other words, if two consecutive messages originate from
the same user, we will not add a second dt element. Listing 15.60 tests for this
feature by adding two messages and expecting only one dt element.

Listing 15.60 Expecting controller not to repeat dt elements

"test should not repeat same user dt's": function () {
this.controller.addMessage({
user: "Kyle",
message: "One-two-three not it!"

});

 From the Library of WoweBook.Com

ptg

15.4 The Message List 419

this.controller.addMessage({ user:"Kyle", message:":)" });

var dts = this.element.getElementsByTagName("dt");
var dds = this.element.getElementsByTagName("dd");
assertEquals(1, dts.length);
assertEquals(2, dds.length);

}

Unsurprisingly, the test fails. To pass it, we need the controller to keep track of
the previous user. This can be done by simply keeping a property with the last seen
user. Listing 15.61 shows the updated addMessage method.

Listing 15.61 Keeping track of the previous user

function addMessage(message) {
if (this.prevUser != message.user) {

var user = document.createElement("dt");
user.innerHTML = "@" + message.user;
this.view.appendChild(user);
this.prevUser = message.user;

}

/* ... */
}

Note that non-existent properties resolve to undefined, which will never be
equal to the current user, meaning that we don’t need to initialize the property. The
first time a message is received, the prevUser property will not match the user, so
a dt is added. From here on, only messages from new users will cause another dt
element to be created and appended.

Also note that node lists, as those returned by getElementsByTagName
are live objects, meaning that they always reflect the current state of the DOM. As
we are now accessing both the collection of dt and dd elements from both tests,
we could fetch those lists in setUp as well to avoid duplicating them. I’ll leave
updating the tests as an exercise.

Another exercise is to highlight any message directed at the current user, by
marking the dd element with a class name. Remember, the current user is available
through this.model.currentUser, and “directed at” is defined as “message
starts with @user:”. Good luck!

 From the Library of WoweBook.Com

ptg

420 TDD and DOM Manipulation: The Chat Client

15.4.5 Feature Tests
The message list controller can only work correctly if it is run in an environment with
basic DOM support. Listing 15.62 shows the controller with its required feature
tests.

Listing 15.62 Feature tests for messageListController

(function () {
if (typeof tddjs == "undefined" ||

typeof document == "undefined" ||
!document.createElement) {

return;
}

var element = document.createElement("dl");

if (!element.appendChild ||
typeof element.innerHTML != "string") {

return;
}

element = null;
/* ... */

}());

15.4.6 Trying it Out
As the controller is now functional, we will update chapp to initialize it once the user
has entered his name. First, we need a few new dependencies. Copy the following
files from Chapter 13, Streaming Data with Ajax and Comet, into public/js:

• json2.js

• url params.js

• ajax.js

• request.js

• poller.js

• comet client.js

Also copy over the message_list_controller.js file, and finally add
script elements to the index.html below the previous includes in the order
listed above. Make sure the js/chat_client.js file stays included last.

 From the Library of WoweBook.Com

ptg

15.4 The Message List 421

Add an empty dl element to index.html and assign it id="messages".
Then update the chat_client.js file as seen in Listing 15.63.

Listing 15.63 Updated bootstrap script

(function () {
if (typeof tddjs == "undefined" ||

typeof document == "undefined") {
return;

}

var c = tddjs.namespace("chat");

if (!document.getElementById || !tddjs ||
!c.userFormController || !c.messageListController) {

alert("Browser is not supported");
return;

}

var model = Object.create(tddjs.ajax.cometClient);
model.url = "/comet";

/* ... */

userController.observe("user", function (user) {
var messages = document.getElementById("messages");
var messagesController =

Object.create(c.messageListController);
messagesController.setModel(model);
messagesController.setView(messages);

model.connect();
});

}());

Start the server again, and repeat the exercise from Listing 14.27 in Chapter 14,
Server-Side JavaScript with Node.js. After posting a message using curl, it should
immediately appear in your browser. If you post enough messages, you’ll notice that
the document eventually gains a scroll and that messages appear below the fold.
That clearly isn’t very helpful, so we’ll make a note of it and get right on it as we
add some finishing touches toward the end of the chapter.

 From the Library of WoweBook.Com

ptg

422 TDD and DOM Manipulation: The Chat Client

15.5 The Message Form
The message form allows users to post messages. The steps required to test and
implement it are going to be very similar to the user form controller we created
previously: it needs a form element as its view; it will handle the form’s submit event
through its handleSubmit method; and finally it will publish the message as an
event on the model object, which passes it to the server.

15.5.1 Setting up the Test
The first thing we need to do is to set up the test case and expect the controller
object to exist. Listing 15.64 shows the initial test case.

Listing 15.64 Setting up the messageFormController test case

(function () {
var messageController = tddjs.chat.messageFormController;

TestCase("FormControllerTestCase", {
"test should be object": function () {

assertObject(messageController);
}

});
}());

Running the test prompts us to define the object with a big fat red “F.” Listing
15.65 does the grunt work.

Listing 15.65 Defining the message form controller

(function () {
var chat = tddjs.namespace("chat");
chat.messageFormController = {};

}());

15.5.2 Setting the View
Just like the user form controller, this controller needs to add the “js-chat” class name
to its view and observe the “submit” event with thehandleSubmitmethod bound
to the controller. In fact, setting the view for the message form controller should
work exactly like the one we previously wrote. We’ll try to be slightly smarter than
to simply repeat the entire process; it seems obvious that the two form controllers
should share parts of their implementation.

 From the Library of WoweBook.Com

ptg

15.5 The Message Form 423

15.5.2.1 Refactoring: Extracting the Common Parts

We will take a small detour by refactoring the user form controller. We will ex-
tract a formController object from which both of the controllers can in-
herit. Step one is adding the new object, as Listing 15.66 shows. Save it in src/

form_controller.js.

Listing 15.66 Extracting a form controller

(function () {
if (typeof tddjs == "undefined") {

return;
}

var dom = tddjs.dom;
var chat = tddjs.namespace("chat");

if (!dom || !dom.addEventHandler ||
!Function.prototype.bind) {

return;
}

function setView(element) {
element.className = "js-chat";
var handler = this.handleSubmit.bind(this);
dom.addEventHandler(element, "submit", handler);
this.view = element;

}

chat.formController = {
setView: setView

};
}());

To build this file, I simply copied the entire user form controller and stripped
out anything not related to setting the view. At this point, you’re probably wondering
“where are the tests?”. It’s a valid question. However, we are not adding or modifying
behavior, we’re merely moving around parts of the implementation. The existing
tests should suffice in telling us if the refactoring is successful—at least for the
documented/tested behavior, which is the only behavior we’re concerned about at
this point.

Step two is making the user form controller use the new generic controller. We
can achieve this by popping it in as the form controller’s prototype object, as seen
in Listing 15.67.

 From the Library of WoweBook.Com

ptg

424 TDD and DOM Manipulation: The Chat Client

Listing 15.67 Changing userFormController’s ancestry

chat.userFormController = tddjs.extend(
Object.create(chat.formController),
util.observable

);

Running the tests confirms that this change does not interfere with the exist-
ing behavior of the user form controller. Next up, we remove userFormCon-
troller’s own setView implementation. The expectation is that it should now
inherit this method from formController thus the tests should still pass. Run-
ning them confirms that they do.

Before the refactoring can be considered done, we should change the tests as
well. The tests we originally wrote for the user form controller’s setView should
now be updated to test formController directly. To make sure the user form
controller still works, we can replace the original test case with a single test that veri-
fies that it inherits the setViewmethod. Although keeping the original tests better
documents userFormController, duplicating them comes with a maintenance
cost. I’ll leave fixing the test case as an exercise.

15.5.2.2 Setting messageFormController’s View

Having extracted the formController, we can add a test for messageForm-
Controller expecting it to inherit the setViewmethod, as Listing 15.68 shows.

Listing 15.68 Expecting messageFormController to inherit setView

(function () {
var messageController = tddjs.chat.messageFormController;
var formController = tddjs.chat.formController;

TestCase("FormControllerTestCase", {
/* ... */
"test should inherit setView from formController":
function () {

assertSame(messageController.setView,
formController.setView);

}
});

}());

Passing the test is achieved by changing the definition of the controller, as seen
in Listing 15.69.

 From the Library of WoweBook.Com

ptg

15.5 The Message Form 425

Listing 15.69 Inheriting from formController

chat.messageFormController =
Object.create(chat.formController);

15.5.3 Publishing Messages
When the user submits the form, the controller should publish a message to the
model object. To test this we can stub the model’s notify method, call handle-
Submit, and expect the stub to be called. Unfortunately, the controller does not
yet have a setModel method. To fix this, we will move the method from user-

FormController to formController. Listing 15.70 shows the updated form
controller.

Listing 15.70 Moving setModel

/* ... */

function setModel(model) {
this.model = model;

}

chat.formController = {
setView: setView,
setModel: setModel

};

Having copied it over, we can remove it from userFormController. To
verify that we didn’t break anything, we simply run the tests, which should be all
green. To our infinite satisfaction, they are.

There is no setModel related test to write for messageFormController
that can be expected to fail, thus we won’t do that. We’re TDD-ing, we want
progress, and progress comes from failing tests.

A test that can push us forward is one that expects the controller to have a
handleSubmit method, which can be seen in Listing 15.71.

Listing 15.71 Expecting the controller to have a handleSubmit method

"test should have handleSubmit method": function () {
assertFunction(messageController.handleSubmit);

}

Listing 15.72 passes the test by adding an empty function.

 From the Library of WoweBook.Com

ptg

426 TDD and DOM Manipulation: The Chat Client

Listing 15.72 Adding an empty function

function handleSubmit(event) {}

chat.messageFormController =
Object.create(chat.formController);

chat.messageFormController.handleSubmit = handleSubmit;

With the method in place we can start testing for its behavior. Listing 15.73
shows a test that expects it to publish a message event on the model.

Listing 15.73 Expecting the controller to publish a message event

TestCase("FormControllerHandleSubmitTest", {
"test should publish message": function () {
var controller = Object.create(messageController);
var model = { notify: stubFn() };

controller.setModel(model);
controller.handleSubmit();

assert(model.notify.called);
assertEquals("message", model.notify.args[0]);
assertObject(model.notify.args[1]);

}
});

Listing 15.74 adds the method call to pass the test.

Listing 15.74 Calling publish

function handleSubmit(event) {
this.model.notify("message", {});

}

Tests are all passing. Next up, Listing 15.75 expects the published object to
include the currentUser as its user property.

Listing 15.75 Expecting currentUser as user

TestCase("FormControllerHandleSubmitTest", {
setUp: function () {
this.controller = Object.create(messageController);
this.model = { notify: stubFn() };
this.controller.setModel(this.model);

},

 From the Library of WoweBook.Com

ptg

15.5 The Message Form 427

/* ... */

"test should publish message from current user":
function () {
this.model.currentUser = "cjno";

this.controller.handleSubmit();

assertEquals("cjno", this.model.notify.args[1].user);
}

});

Once again, we extracted common setup code to the setUp method while
adding the test. Passing the test is accomplished by Listing 15.76.

Listing 15.76 Including the current user in the published message

function handleSubmit(event) {
this.model.notify("message", {

user: this.model.currentUser
});

}

The final piece of the puzzle is including the message. The message should be
grabbed from the message form, which means that the test will need to embed some
markup. Listing 15.77 shows the test.

Listing 15.77 Expecting the published message to originate from the form

TestCase("FormControllerHandleSubmitTest", {
setUp: function () {

/*:DOC element = <form>
<fieldset>
<input type="text" name="message" id="message">
<input type="submit" value="Send">

</fieldset>
</form> */

/* ... */
this.controller.setView(this.element);

},

/* ... */

"test should publish message from form": function () {
var el = this.element.getElementsByTagName("input")[0];

 From the Library of WoweBook.Com

ptg

428 TDD and DOM Manipulation: The Chat Client

el.value = "What are you doing?";

this.controller.handleSubmit();

var actual = this.model.notify.args[1].message;
assertEquals("What are you doing?", actual);

}
});

To pass this test we need to grab the first input element and pass its current
value as the message. Listing 15.78 shows the required update to handleSubmit.

Listing 15.78 Grabbing the message

function handleSubmit(event) {
var input = this.view.getElementsByTagName("input")[0];

this.model.notify("message", {
user: this.model.currentUser,
message: input.value

});
}

The tests now pass, which means that the chat client should be operable in a
real setting. As before, we haven’t implemented much error handling for the form,
and I will leave doing so as an exercise. In fact, there are several tasks for you to
practice TDD building on this exercise:

• Form should prevent the default action of submitting it to the server

• Form should not send empty messages

• Add missing error handling to all the methods

• Emit an event (e.g. using observable) from the message once a form is
posted. Observe it to display a loader gif, and emit a corresponding event
from the message list controller when the same message is displayed to
remove the loading indicator.

I’m sure you can think of even more.

15.5.4 Feature Tests
Because most of the functionality is taken care of by the generic form controller,
there isn’t much to feature test. The only direct dependencies are tddjs,

 From the Library of WoweBook.Com

ptg

15.6 The Final Chat Client 429

formController andgetElementsByTagName. Listing 15.79 shows the fea-
ture tests.

Listing 15.79 Feature testing messageFormController

if (typeof tddjs == "undefined" ||
typeof document == "undefined") {

return;
}

var chat = tddjs.namespace("chat");

if (!chat.formController ||
!document.getElementsByTagName) {

return;
}

/* ... */

15.6 The Final Chat Client
As all the controllers are complete, we can now piece together the entire chat client
and take it for a real spin. Listing 15.80 adds the message form to the HTML
document.

Listing 15.80 Adding the message form to index.html

<!-- ... -->
<dl id="messages"></dl>
<form id="messageForm">
<fieldset>

<input type="text" name="message" id="message"
autocomplete="off">

</fieldset>
</form>
<!-- ... -->

Copy over message_form_controller.js along with form_

controller.js and the updated user_form_controller.js and
add script elements to index.html to include them. Then update the boot-
strap script, as seen in Listing 15.81.

 From the Library of WoweBook.Com

ptg

430 TDD and DOM Manipulation: The Chat Client

Listing 15.81 Final bootstrapping script

/* ... */

userController.observe("user", function (user) {
/* ... */

var mForm = document.getElementById("messageForm");
var messageFormController =

Object.create(c.messageFormController);
messageFormController.setModel(model);
messageFormController.setView(mForm);

model.connect();
});
</script>

Firing up the client in a browser should now present you with a fully functional,
if not particularly feature rich, chat client, implemented entirely using TDD and
JavaScript, both server and client side. If you experience trouble posting messages,
make sure you completed messageFormController by making its handle-
Submit method abort the default event action.

15.6.1 Finishing Touches
To get a feeling of how the chat application behaves, try inviting a friend to join
you over the local network. Alternatively, if you’re alone, fire up another browser,
or even just another tab in your current browser. There are currently no cookies
involved, so running two sessions from different tabs in the same browser is entirely
doable.

15.6.1.1 Styling the Application

An unstyled webpage is a somewhat bleak face for the chat application. To make
it just a tad bit nicer to rest our eyes on, we will add some CSS. I am no designer,
so don’t get your hopes up, but updating css/chapp.css with the contents of
Listing 15.82 will at least give the client rounded corners, box shadow, and some
light grays.

Listing 15.82 “Design” for the chat client

html { background: #f0f0f0; }
form, dl { display: none; }
.js-chat { display: block; }

 From the Library of WoweBook.Com

ptg

15.6 The Final Chat Client 431

body {
background: #fff;
border: 1px solid #333;
border-radius: 12px;
-moz-border-radius: 12px;
-webkit-border-radius: 12px;
box-shadow: 2px 2px 30px #666;
-moz-box-shadow: 2px 2px 30px #666;
-webkit-box-shadow: 2px 2px 30px #666;
height: 450px;
margin: 20px auto;
padding: 0 20px;
width: 600px;

}

form, fieldset {
border: none;
margin: 0;
padding: 0;

}

#messageForm input {
padding: 3px;
width: 592px;

}

#messages {
height: 300px;
overflow: auto;

}

15.6.1.2 Fixing the Scrolling

As we noted earlier, the client eventually gains a scroll and adds messages below
the fold. With the updated stylesheet, the scroll is moved to the definition list that
contains the messages. In order to keep the message form visible, we put a restraint
on its height. Because we’re more interested in new messages popping in, we will
tweak the message list controller to make sure the definition list is always scrolled
all the way to the bottom.

We can scroll the list to the bottom by setting the scrollTop property to its
maximum value. However, we don’t need to determine this value exactly; all we need
to do is set it to some value equal to or greater than the max value, and the browser
will scroll the element as far as possible. The scrollHeight of an element seems

 From the Library of WoweBook.Com

ptg

432 TDD and DOM Manipulation: The Chat Client

like a good fit; its value is the entire height of the element’s contents, which will
obviously always be greater than the greatest possible scrollTop. Listing 15.83
shows the test.

Listing 15.83 Expecting the message list controller to scroll its view down

TestCase("MessageListControllerAddMessageTest", {
/* ... */

"test should scroll element down": function () {
var element = {

appendChild: stubFn(),
scrollHeight: 1900

};

this.controller.setView(element);
this.controller.addMessage({ user:"me",message:"Hey" });

assertEquals(1900, element.scrollTop);
}

});

This test uses a stubbed element rather than the actual element available in the
test. In a test such as this, we need complete control over the input and output to
verify its correct behavior. We cannot stub an element’sscrollTopproperty setter;
neither can we easily determine that its value was set correctly, because it depends
on the rendered height and requires styles to be added to make the element scroll
on overflow to begin with. To pass the test we assign the value of scrollHeight
to scrollTop as seen in Listing 15.84.

Listing 15.84 Scrolling the message list down on each new message

function addMessage(message) {
/* ... */

this.view.scrollTop = this.view.scrollHeight;
}

15.6.1.3 Clearing the Input Field

When a user has posted her message, it is unlikely that they would like to start the
next message with the text from the previous one. Thus, the message form controller
should clear the input field once the message is posted. Listing 15.85 shows the test.

 From the Library of WoweBook.Com

ptg

15.6 The Final Chat Client 433

Listing 15.85 Expecting the message form to clear message

"test should clear form after publish": function () {
var el = this.element.getElementsByTagName("input")[0];
el.value = "NP: A vision of misery";

this.controller.handleSubmit(this.event);

assertEquals("", el.value);
}

Ideally, we would not clear the form until we know for sure the message was
sent. Unfortunately, the cometClient does not support adding a success callback
at this point, so the best we can do is clearing it immediately after having sent it and
hope for the best. The proper fix would include adding a third options argument
to cometClient and wait for success. Listing 15.86 shows the message form
controller’s updated handleSubmit.

Listing 15.86 Clearing the message after publishing it

function handleSubmit(event) {
/* ... */

input.value = "";
}

It would also be nice if the message form gave focus to the input field immedi-
ately upon initializing it. I will leave doing so as an exercise.

15.6.2 Notes on Deployment
Copy over the message form and message list controllers to chapp’s public di-
rectory and reload your browser. The application should now be slightly smoother
to use.

Simply copying files to deploy them is cumbersome and error prone. Addi-
tionally, serving the application with 15 individual script files is not optimal for
performance. If you installed Ruby and RubyGems to use the jstestdriver
and jsautotest tools in Chapter 3, Tools of the Trade, then you have a JavaScript
and CSS concatenator and minifier at your fingertips. Listing 15.87 shows the three
required commands to install Juicer, which will conveniently package your scripts
for deployment.

 From the Library of WoweBook.Com

ptg

434 TDD and DOM Manipulation: The Chat Client

Listing 15.87 Installing Juicer and YUI Compressor

$ gem install juicer
$ juicer install yui_compressor

Run from the root of the Node.js application, the command in Listing 15.88 will
produce a single file, chat.min.js, containing the entire client-side application.

Listing 15.88 Using Juicer to compress files

juicer merge -s -f -o public/js/chat.min.js \
public/js/function.js \
public/js/object.js \
public/js/tdd.js \
public/js/observable.js \
public/js/form_controller.js \
public/js/user_form_controller.js \
public/js/json2.js \
public/js/url_params.js \
public/js/ajax.js \
public/js/request.js \
public/js/poller.js \
public/js/comet_client.js \
public/js/message_list_controller.js \
public/js/message_form_controller.js \
public/js/chat_client.js

The final result is a 14kB JavaScript file containing a fully operational chat room.
Served with gzip compression, the total download should be about 5kB.

Juicer is also able to find dependencies declared inside script files, meaning that
we can jot down each file’s dependencies inside comments in them and then simply
run “juicer merge chat.js” to produce the complete file, including the dependencies.
More information on Juicer is available from the book’s website.4

15.7 Summary
In this chapter we have been able to pull together a lot of the code developed
throughout this book to create a fully functional, entirely JavaScript based browser-
based chat application. And we did it all using test-driven development, right from
the very start.

4. http://tddjs.com

 From the Library of WoweBook.Com

http://tddjs.com

ptg

15.7 Summary 435

The key aspect of this chapter has been unit testing DOM manipulation, and
structuring the outermost application layer in a sensible way. As we’ve discussed
numerous times already, well factored software easily lends itself to unit testing, and
the GUI—the DOM—is no exception to this rule.

By employing the Model View Presenter/Passive View pattern, we were able
to identify reusable components in the view and implement the chat client in a
modular way, resulting in very loosely coupled modules that were easy to test in
isolation. Developing these components using TDD was straightforward because
each distinct unit had a well-defined responsibility. Dividing a hard problem into
several smaller problems is a lot more manageable than trying to solve it all in
one go.

An interesting aspect about a pattern such as Model View Presenter is that there
are numerous ways to apply it to the problem domain of client-side JavaScript. For
instance, in many cases a portion of the DOM will represent the model because
JavaScript widgets frequently manipulate the data already found on the page.

The chat client was the final test-driven example, and we have reached the end
of Part III, Real-World Test-Driven Development in JavaScript. In the final part of
the book we’ll draw some lessons from the past five chapters as we dive deeper into
stubbing and mocking, and finally identify some guidelines for writing good unit
tests.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

Part IV

Testing Patterns

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

16Mocking and Stubbing

While using test-driven development to develop five sample projects, we’ve
become intimately familiar with the stubFn function. We have used it as a tool to
both inspect interaction between objects, as well as isolating interfaces under test.
But what exactly is a stub? We are about to find out as we dive a little deeper into
the topic of using test doubles, objects that look like the real thing but really are
bleak impersonations used to simplify tests.

In this chapter we will look at the general theory of using test doubles, and
get to know a few common types of test doubles a little better. Because we have
already used stubs extensively in tests throughout Part III, Real-World Test-Driven
Development in JavaScript, we will relate the discussion to previous examples. We
will also look at a more capable stubbing and mocking library and see how such a
thing can be used in place of stubFn and other homegrown helpers to simplify
some of the tests we have written so far.

16.1 An Overview of Test Doubles
A test double is an object that supports the same API, or at least the parts of it
relevant to a given test, as the real thing, but does not necessarily behave the same
way. Test doubles are used to both isolate interfaces and make tests more convenient;
making tests faster, avoiding calls to inconvenient methods, or spying on method
calls in place of assertions on direct or indirect output.

439

 From the Library of WoweBook.Com

ptg

440 Mocking and Stubbing

The terminology used in this chapter is mostly adapted from Gerard Meszaros
book “xUnit Test Patterns,” [7] slightly adjusted to the world of JavaScript. In
addition to the names and definitions of different types of test doubles, I will use
“system under test” to describe the code being tested.

16.1.1 Stunt Doubles
Gerard Meszaros compares test doubles to Hollywood’s stunt doubles. Some movie
scenes require dangerous stunts, physically demanding feats or other behavior that
the leading actor is either not willing or able to perform. In such cases, a stunt
double is hired to do the job. The stunt double need not be an accomplished actor,
he simply needs to be able to catch on fire or fall off a cliff without being mortally
wounded; and he needs to look somewhat like the leading actor, at least from a
distance.

Test doubles are just like stunt doubles. They take on the job when it’s incon-
venient to use the leading star (production code); all we require from them is that
the audience (system under test) cannot tell it apart from the real deal.

16.1.2 Fake Object
The stubs we’ve been using aggressively throughout the example projects in Part III,
Real-World Test-Driven Development in JavaScript, are one form of test doubles.
They appear to behave like real objects, but their actions are pre-programmed to
force a certain path through the system under test. Additionally, they record data
about their interaction with other objects, available in the test’s verification stage.

Another kind of test double is the fake object. A fake object provides the same
functionality as the object it replaces and can be seen as an alternative implementa-
tion, only its implementation is considerably simpler. For example, when working
with Node.js the file system can easily become inconvenient from a testing perspec-
tive. Constantly accessing it can make tests slower, and keeping a lot of test data
on disk requires cleanup. We can alleviate these problems by implementing an in-
memory file system that supports the same API as Node’s fs module and use this
in tests.

Fakes differ from stubs in that stubs are usually created and injected into the
system from individual tests on a per-need basis. Fakes are more comprehensive
replacements, and are usually injected into the system as a whole before running
any tests. Tests are usually completely unaware of the fakes because they behave
just like the objects they mirror, only significantly simplified. In the Node.js file
system example we can imagine a complete implementation of the fs module as

 From the Library of WoweBook.Com

ptg

16.2 Test Verification 441

an in-memory file system. The test setup can then make sure to place the fake
implementation ahead of the built-in one on the load path. Neither individual tests
nor production code will be aware thatrequire("fs") actually loads a simplified
in-memory file system.

16.1.3 Dummy Object
A dummy object, as its name suggests, is usually just an empty object or function.
When testing functions that expect several parameters, we are often only concerned
with one of them at a time. If the function we’re testing throws errors for missing
or wrongly typed arguments, we can pass it a dummy to “shut it up” while we focus
on behavior not related to the argument in question.

As an example, consider the test in Listing 16.1 from Chapter 15, TDD and DOM
Manipulation: The Chat Client. The test verifies that the message list controller sets
the element’s scrollTop equal to the value of its scrollHeight. However,
the method also appends a new DOM element to the view element, and throws an
exception if it does not have an appendChild method. For the purpose of this
test we use a dummy to pass the test on appendChild to get to the behavior we
want to test.

Listing 16.1 Using a dummy function

"test should scroll element down": function () {
var element = {

appendChild: stubFn(),
scrollHeight: 1900

};

this.controller.setView(element);
this.controller.addMessage({ user:"me",message:"Hey" });

assertEquals(1900, element.scrollTop);
}

16.2 Test Verification
Unit tests have four stages; setup, often divided between a shared setUp method
and test specific configuration of objects; exercise, in which we call the function(s)
to test; verification, in which we assert that the result of the exercise stage coincides
with our expectations; and finally tear down, which never happens inside a test, but
rather in a dedicated and shared tearDown method.

 From the Library of WoweBook.Com

ptg

442 Mocking and Stubbing

Before we get into the nitty-gritty of stubs, mocks, and the difference between
them, we will explore our options at the verification stage. As we will see shortly, veri-
fication strategy is a central issue when making the choice between stubs and mocks.

16.2.1 State Verification
Many of the tests in Part III, Real-World Test-Driven Development in JavaScript,
determine success by asserting that certain objects have a specific state after some
function was called. As an example, consider Listing 16.2 from Chapter 15, TDD
and DOM Manipulation: The Chat Client, which expects the user form controller
to set the currentUser property of the model object. It passes a dummy model
object to the controller, and then inspects the object’s currentUser object to
verify its behavior.

Listing 16.2 Inspecting an object’s state to verify test

"test should set model.currentUser": function () {
var model = {};
var event = { preventDefault: stubFn() };
var input = this.element.getElementsByTagName("input")[0];
input.value = "cjno";
this.controller.setModel(model);
this.controller.setView(this.element);

this.controller.handleSubmit(event);

assertEquals("cjno", model.currentUser);
}

The fact that the last line inspects a property of an object passed to the system
under test to verify its success is called state verification. State verification leads to
intuitive tests that clearly describe the outcome of using some part of the system. In
this case, if the input field contains a username when the controller handles a submit
event, we expect it to transfer this username to the model object’s currentUser
property. The test does not say anything about how this should happen, thus it is
completely detached from the implementation of handleSubmit.

16.2.2 Behavior Verification
In many cases, testing the direct output of a test is not as simple as in Listing 16.2.
For instance, keeping with the chat client example, the message form controller is
in charge of publishing messages from the client to the server through the model
object. Because there is no server in the tests, we cannot simply ask it for the message

 From the Library of WoweBook.Com

ptg

16.3 Stubs 443

we expected it to receive. To test this, we used a stub, as seen in Listing 16.3. Rather
than inspecting some object’s state to verify its results, this test stubs the model’s
publish method and then proceeds by asserting that it was called.

Listing 16.3 Inspecting a function’s behavior to verify test

"test should publish message": function () {
var controller = Object.create(messageController);
var model = { notify: stubFn() };

controller.setModel(model);
controller.handleSubmit();

assert(model.notify.called);
assertEquals("message", model.notify.args[0]);
assertObject(model.notify.args[1]);

}

This test contrasts with the previous one that used state verification. It does
not check whether the message was stored somewhere, instead it uses behavior
verification; it verifies that the model’s publishmethod was called with the correct
arguments. Having already tested the Comet client to be used in production, we
know that the message will be handled correctly if publish is called this way.

16.2.3 Implications of Verification Strategy
The chosen verification strategy directly influences how a test reads, which is obvious
from looking at the two tests above. Less clear is the fact that the verification strategy
also influences production code, as well as its relationship to the tests.

Behavior verification taps into the system’s implementation by expecting certain
function calls to take place. On the other hand, state verification is a mere obser-
vation on the (direct or indirect) input/output relationship. This means that using
behavior verification extensively couples the test code tighter to the system, which
in turn limits our ability to change its implementation, e.g., through refactoring,
without also having to change the tests.

16.3 Stubs
Stubs are test doubles with pre-programmed behavior. They may return a specific
value, regardless of received arguments, or throw an exception. Because stubs are
used in place of real objects and functions, they are also used as a measure to avoid
bumping into inconvenient interfaces.

 From the Library of WoweBook.Com

ptg

444 Mocking and Stubbing

16.3.1 Stubbing to Avoid Inconvenient Interfaces
Listing 16.4 shows the previous chat client message list controller test again. It uses
a stub in place of a DOM element to verify that the message list controller scrolls
the element all the way down after appending DOM elements to it.

Listing 16.4 Using a stub to avoid the DOM

"test should scroll element down": function () {
var element = {
appendChild: stubFn(),
scrollHeight: 1900

};

this.controller.setView(element);
this.controller.addMessage({ user:"me",message:"Hey" });

assertEquals(1900, element.scrollTop);
}

As noted earlier, the test uses a stub appendChild. Furthermore, it specifies
a scrollHeight with a known value, allowing us to verify that the scrollTop
property was assigned this value. By using a stub we avoid having to render the
element and we avoid calculating the actual scrollTop value, thus making the
test faster and avoiding possible cross browser issues related to the rendering of
the element.

16.3.2 Stubbing to Force Certain Code Paths
Stubs are frequently used to manipulate the system under test to take a specific
path, allowing us to verify a single aspect in isolation. For instance, in Chapter 12,
Abstracting Browser Differences: Ajax, we wrote the test in Listing 16.5 to verify that
local requests are considered successful if they have an HTTP status of “0.”

Listing 16.5 Expecting success for local requests

"test should call success handler for local requests":
function () {
this.xhr.readyState = 4;
this.xhr.status = 0;
var success = stubFn();
tddjs.isLocal = stubFn(true);

ajax.get("file.html", { success: success });

 From the Library of WoweBook.Com

ptg

16.4 Test Spies 445

this.xhr.onreadystatechange();

assert(success.called);
}

By pre-programming tddjs.isLocal to always return true, we force the
request interface through the path that handles local requests. Gerard Meszaros
calls these kinds of stubs Responders, and they are commonly used to test the happy
path through a system.

16.3.3 Stubbing to Cause Trouble
Similar to the responder, a Saboteur is a stub that behaves strangely by returning
unexpected values or even throwing exceptions. Injecting such a stub into the
system allows us to test how well it deals with uncooperative objects and unexpected
behavior.

Listing 16.6 shows a test from Chapter 11, The Observer Pattern, in which a
saboteur is used to verify that all observers are notified even when some of them
throw exceptions.

Listing 16.6 Using a saboteur to ensure all observers are notified

"test should notify all even when some fail": function () {
var observable = new tddjs.util.Observable();
var observer1 = function () { throw new Error("Oops"); };
var observer2 = function () { observer2.called = true; };

observable.addObserver(observer1);
observable.addObserver(observer2);
observable.notifyObservers();

assertTrue(observer2.called);
}

The saboteur is a useful tool when bulletproofing interfaces intended for a
wide audience. They can also be used to mimic a lot of strange behavior in certain
browsers, helping us write code that survives even the fiercest host objects.

16.4 Test Spies
Test spies are objects and functions that record information about their usage
throughout the system under test. They are useful when determining a function’s
success is not easily accomplished by inspecting its return value or changes to the

 From the Library of WoweBook.Com

ptg

446 Mocking and Stubbing

state of objects with which it interacts. You may recognize that the stubs in Part III,
Real-World Test-Driven Development in JavaScript, have frequently been used this
way; in fact, test spies are usually implemented as recording stubs.

16.4.1 Testing Indirect Inputs
The request interface we built in Chapter 12, Abstracting Browser Differences:
Ajax, provides many examples of using test spies to verify a test. The interface
was built to provide a higher level abstraction over the XMLHttpRequest object,
and as such its success is mainly defined by its ability to correctly map calls to
the underlying object. Listing 16.7 shows a test that verifies that requesting a URL
causes the XMLHttpRequest object’s send method to be called.

Listing 16.7 Using a test spy to verify that a method is called on an indirect input

TestCase("GetRequestTest", {
setUp: function () {
this.ajaxCreate = ajax.create;
this.xhr = Object.create(fakeXMLHttpRequest);
ajax.create = stubFn(this.xhr);

},

/* ... */

"test should call send": function () {
ajax.get("/url");

assert(this.xhr.send.called);
}

});

The setUp pre-programs ajax.create to return a fakeXMLHttp

Request instance, which is assigned to the test for behavior verification. The
object returned from ajax.create is an indirect input to the ajax.request
method. Stubs or mocks are usually the only way to test the effects of an indirect
input on the system under test.

16.4.2 Inspecting Details about a Call
A test spy need not restrict itself to recording whether or not a function was called.
It can record any kind of data about its use. The stubFn helper used throughout
most of Part III, Real-World Test-Driven Development in JavaScript, also recorded

 From the Library of WoweBook.Com

ptg

16.5 Using a Stub Library 447

the value of this and the received arguments. As we’ll see in Section 16.5, Using
a Stub Library, the spy can be even smarter, recording this and arguments for
each call and providing a retrieval interface to access the recorded data.

Listing 16.8 shows a test from Chapter 15, TDD and DOM Manipulation: The
Chat Client, that verifies that the message list controller’s addMessage method
was bound to the controller when registered as an event handler.

Listing 16.8 Using a test spy to verify the this binding of an event handler

"test should observe with bound addMessage": function () {
var stub = this.controller.addMessage = stubFn();

this.controller.setModel(this.model);
this.model.observe.args[1]();

assert(stub.called);
assertSame(this.controller, stub.thisValue);

}

16.5 Using a Stub Library
In Chapter 11, The Observer Pattern, we used a called flag and inline functions to
verify that the observable interface notified observers when its notifymethod
was called. Even though we didn’t use specific terminology to describe the pattern
in that chapter, we now recognize these functions as test spies.

Because JavaScript’s functions are such powerful beasts, we can go a long way
without a dedicated stubbing library. However, as we realized in Chapter 12, Ab-
stracting Browser Differences: Ajax, declaring the flag and function quickly becomes
repetitious, especially when using stubs and spies extensively. Even with the sim-
ple stubFn helper, we recognized that stubbing global interfaces, such as the
ajax.create method, came with the burden of adding setUp and tearDown
methods to ensure that the original interfaces were restored after the tests completed.

Motivated by our voracious urge to remove duplication in any form, we will
see how using a stubbing library can help reduce the pain of manual stubbing. The
library we will be using is called “Sinon”1 and can be downloaded from the book’s
website.2

1. In Greek mythology, Sinon was a spy and a liar who talked the Trojans into accepting the Trojan
horse

2. http://tddjs.com

 From the Library of WoweBook.Com

http://tddjs.com

ptg

448 Mocking and Stubbing

16.5.1 Creating a Stub Function
Creating a stub function using Sinon is very similar to our trusty old stubFn.
Listing 16.9 shows a test from the observable test case, updated to use sinon.
stub.

Listing 16.9 Using Sinon to create simple function stubs

"test should call all observers": function () {
var observable = Object.create(tddjs.util.observable);
var observer1 = sinon.stub();
var observer2 = sinon.stub();

observable.addObserver(observer1);
observable.addObserver(observer2);
observable.notifyObservers();

assertTrue(observer1.called);
assertTrue(observer2.called);

}

The only noticeable difference in this example is the way the stubs are created.
Rather than the original inline function that set a property on the function itself, we
now have a simple call to sinon.stub.

16.5.2 Stubbing a Method
Throwaway stubs are simple enough to create inline, and don’t necessarily warrant
the use of an external library. Stubbing global methods, however, is a bit more
hassle because we must make sure to restore the original method after running the
test. Listing 16.10 shows an extract of the setUp and tearDown methods of the
Comet client test case along with a test using the stubFn method on the global
ajax.poll.

Listing 16.10 Spying manually

TestCase("CometClientConnectTest", {
setUp: function () {
this.client = Object.create(ajax.cometClient);
this.ajaxPoll = ajax.poll;

},

tearDown: function () {
ajax.poll = this.ajaxPoll;

},

 From the Library of WoweBook.Com

ptg

16.5 Using a Stub Library 449

"test connect should start polling": function () {
this.client.url = "/my/url";
ajax.poll = stubFn({});

this.client.connect();

assert(ajax.poll.called);
assertEquals("/my/url", ajax.poll.args[0]);

}
});

Listing 16.11 shows the same listing using Sinon to handle stubs. Notice that
we still need the tearDown, but less manual juggling of the interfaces is required.

Listing 16.11 Using Sinon to handle stubs

TestCase("CometClientConnectTest", {
setUp: function () {

this.client = Object.create(ajax.cometClient);
},

tearDown: function () {
ajax.poll.restore();

},

"test connect should start polling": function () {
this.client.url = "/my/url";
sinon.stub(ajax, "poll").returns({});

this.client.connect();

assert(ajax.poll.calledWith("/my/url");
}

});

In addition to simplifying the stub management business, Sinon provides a more
fine-grained retrieval interface, resulting in tests that read better. But there is more;
Sinon provides a sandbox feature that automatically manages and restores stubs.
Listing 16.12 shows an example.

Listing 16.12 Automatically managing stubs with Sinon

"test connect should start polling":
sinon.test(function (stub) {

this.client.url = "/my/url";

 From the Library of WoweBook.Com

ptg

450 Mocking and Stubbing

stub(ajax, "poll").returns({});

this.client.connect();

assert(ajax.poll.calledWith("/my/url"));
})

By wrapping the test function in a sinon.test call and using the stub

method that is passed to it, stubs are strictly local and are automatically restored
upon the test’s completion, even if the test throws exceptions. When using this
feature we can throw out all the stub related logic in both thesetUp andtearDown
methods.

When you have a lot of tests that need this kind of clean up you can also wrap
the entire test case object in a call to sinon.testCase, which is the same as
wrapping every test function in a call to sinon.test. Listing 16.13 shows an
example.

Listing 16.13 Automatically restoring stubs after each test

TestCase("CometClientConnectTest", sinon.testCase({
setUp: function (stub) {
/* ... */
stub(ajax, "poll").returns({});

},

"test connect should start polling": function () {
this.client.connect();

assert(ajax.poll.calledWith(this.client.url));
},

"test should not connect if connected": function () {
this.client.connect();
this.client.connect();

assert(ajax.poll.calledOnce);
},

/* ... */
});

 From the Library of WoweBook.Com

ptg

16.5 Using a Stub Library 451

16.5.3 Built-in Behavior Verification
Sinon comes with a few assertions that can be used for clearer behavior verification.
The problem with the assert in Listing 16.12 is that the resulting error message in
case of test failure will be “expected true but was false,” which isn’t very helpful. By
using Sinon’s asserts, the error message will instead look something like “expected
poll to be called once but was called 0 times.” Listing 16.14 shows the test updated
to use assertCalledWith.

Listing 16.14 Using tailored asserts for behavior verification

"test connect should start polling": function () {
this.client.url = "/my/url";
stub(ajax, "poll").returns({});

this.client.connect();

sinon.assert.calledWith(ajax.poll, "/my/url");
}

Sinon is a stand alone library, and does not require JsTestDriver. The reason this
works “out of the box” with JsTestDriver is that Sinon uses the same definition of
failure, which is throwing anAssertError. To use the asserts with another testing
framework, simply set the type of exception to throw on failure by overriding the
sinon.failException string. If your testing framework of choice does not fail
by throwing an exception, override the sinon.failmethod to do the right thing.

To sugar things up even more, Sinon can inject its assertions into another object,
allowing them to live side-by-side with the testing framework’s assertions. JsTest-
Driver uses global assertions. Listing 16.15 shows the necessary code for completely
seamless integration.

Listing 16.15 Mixing Sinon’s assertions with the default JsTestDriver ones

// Typically done in a global helper to share among
// test cases
sinon.assert.expose(this, true, false);

TestCase("CometClientConnectTest", {
/* ... */

"test connect should start polling": sinon.test(function (
stub) {
this.client.url = "/my/url";
stub(ajax, "poll").returns({});

 From the Library of WoweBook.Com

ptg

452 Mocking and Stubbing

this.client.connect();

assertCalledWith(ajax.poll, "/my/url");
})

});

sinon.assert.expose takes three arguments: the target object to inject
assertions into; whether or not assertions should be prefixed (i.e., true results in
“target.assertCalled”; false results in “target.called”); and finally whether or not
fail and failException should also be injected.

16.5.4 Stubbing and Node.js
Sinon exposes a CommonJS module, which means that it can also be used in a
CommonJS compliant runtime, such as Node.js. Listing 16.16 shows a test from
Chapter 14, Server-Side JavaScript with Node.js, in which we stub the getMes-
sagesSince test to return a promise object.

Listing 16.16 Stubbing in Node.js

var sinon = require("sinon");

/* ... */
testCase(exports, "chatRoom.waitForMessagesSince", {
/* ... */

"should yield existing messages":
sinon.test(function (test, stub) {
var promise = new Promise();
promise.resolve([{ id: 43 }]);
stub(this.room, "getMessagesSince").returns(promise);

this.room.waitForMessagesSince(42).then(function (m) {
test.same([{ id: 43 }], m);
test.done();

});
},

/* ... */
});

Note that Sinon takes care not to override thetest object that Nodeunit passes
to the test. The stub function is passed after any arguments passed to the function
when it is called by the test runner.

 From the Library of WoweBook.Com

ptg

16.6 Mocks 453

16.6 Mocks
Mocks have been mentioned many times throughout the book, but never explained
or used. The reason is that manually creating mocks is not as easy as manually creat-
ing stubs and spies. Like stubs, mocks are objects with pre-programmed behavior.
Additionally, a mock has pre-programmed expectations and built-in behavior ver-
ification. Using mocks turns the test upside-down; first we state the expectations,
then we exercise the system. Finally we verify that all the mock’s expectations were
met. Listing 16.17 shows an example using with the “start polling” test.

Listing 16.17 Mocking ajax.poll

"test connect should start polling": function () {
this.client.url = "/my/url";
var mock = sinon.mock(ajax)
mock.expects("poll").withArgs("/my/url").returns({});

this.client.connect();

mock.verify();
}

This test states its success criteria upfront. It does so by creating a mock for the
ajax object, and adding an expectation on it. It expects the poll method to be
called exactly once, with the URL as argument. In contrast to the stubs we’ve used
so far, mocks fail early. If the poll method is called a second time, it immediately
throws an ExpectationError, failing the test.

16.6.1 Restoring Mocked Methods
The mocks can be undone just like the stubs, by calling restore on the mocked
method. Additionally, callingverify implicitly restores the mocked method. How-
ever, if the test throws an exception before the call to verify, we might end up
leaking the mock into another test, causing a ripple effect.

Sinon’s sandbox feature can mitigate the problem for mocks just as much
as it does for stubs. When wrapping the test method in a sinon.test call,
it will receive a mock method as its second parameter, suitable for safe mock-
ing. After the test finishes, Sinon not only restores all stubs and mocks, it also
conveniently verifies all mocks, meaning that the above test could be written like
Listing 16.18.

 From the Library of WoweBook.Com

ptg

454 Mocking and Stubbing

Listing 16.18 Verifying mocks automatically

"test connect should start polling":
sinon.test(function (stub, mock) {
var url = this.client.url = "/my/url";
mock(ajax).expects("poll").withArgs(url).returns({});

this.client.connect();
})

The mock once again expects exactly one call—no more, no less. These three
lines replace the original four-line test along with both the setUp and tearDown
methods. Less code means less chance of bugs, less code to maintain, and less code
to read and understand. However, that alone does not necessarily mean you should
prefer mocks to stubs, or even use fakes at all.

16.6.2 Anonymous Mocks
Mocks, like stubs, can be simple anonymous functions to pass into the system.
All mocks, including anonymous ones, support the same interface as stubs to pre-
program them to return specific values or throw exceptions. Additionally, using
Sinon’s sandbox, they can be automatically verified, allowing for really short and
concise tests.

Listing 16.19 revisits the observable test from Listing 16.6, this time using
mocks to create anonymous mock functions, one of which is set up to throw an
exception. As did the previous mocks, the anonymous mocks expect exactly one
call.

Listing 16.19 Using mocks to verify observable’s notify

"test observers should be notified even when some fail":
sinon.test(function(stub, mock) {
var observable = Object.create(tddjs.util.observable);
observable.addObserver(mock().throwsException());
observable.addObserver(mock());

observable.notifyObservers();
})

Because sinon.test keeps record of all stubs and mocks, and automatically
verifies mocks, this test does not need local references to the two mock functions.

 From the Library of WoweBook.Com

ptg

16.6 Mocks 455

16.6.3 Multiple Expectations
Using mocks, we can form complex expectations by expecting several calls, some
or all with differing arguments and this values. The expectation returned by
expects can be tuned by calling methods such as withArgs as seen above;
withExactArgs, which does not allow excessive arguments; as well as never,
once, twice, and the more generic atLeast, atMost, and exactlymethods,
which tune the number of expected calls.

Listing 16.20 shows one of the original Comet client tests, which expects the
connect method not to be called once the client is connected.

Listing 16.20 Expecting connect not to be called a second time

"test should not connect if connected": function () {
this.client.url = "/my/url";
ajax.poll = stubFn({});
this.client.connect();
ajax.poll = stubFn({});

this.client.connect();

assertFalse(ajax.poll.called);
}

Using Sinon mocks, we can rewrite this test in two ways. The default expectation
on mocks is that they will be called one time, and one time only. Never calling
them, or calling them two times causes an ExpectationError, failing the test.
Even though one call is the default expectation, we can make it explicit, as seen in
Listing 16.21.

Listing 16.21 Explicitly expecting one call

"test should not connect if connected":
sinon.test(function (stub, mock) {

this.client.url = "/my/url";
mock(ajax).expects("poll").once().returns({});
this.client.connect();
this.client.connect();

})

Notice how the this value retains its implicit binding to the test case, even as
a callback to sinon.test. The second way to write this test using mocks, which
mirrors the original test more closely, can be seen in Listing 16.22.

 From the Library of WoweBook.Com

ptg

456 Mocking and Stubbing

Listing 16.22 Using the never method

"test should not connect if connected":
sinon.test(function (stub, mock) {
this.client.url = "/my/url";
stub(ajax, "poll").returns({});
this.client.connect();
mock(ajax).expects("poll").never();
this.client.connect();

})

The test looks different, but behaves exactly like the previous one; if the poll
method is called a second time, it will immediately throw an exception that fails the
test. The only difference between these two tests is the resulting exception message
in case they fail. Using once to expect only call will probably yield an error message
closer to the intended result than first stubbing the method and then mocking it
with the never modifier.

16.6.4 Expectations on the this Value
Mocks are capable of any kind of inspection possible with test spies. In fact, mocks
use test spies internally to record information about calls to them. Listing 16.23
shows one of the tests from the chat client’s user form controller. It expects the
controller’s handleSubmit method bound to it as the submit event handler.

Listing 16.23 Expecting the event handler to be bound to the controller

"test should handle event with bound handleSubmit":
sinon.test(function (stub, mock) {
var controller = this.controller;
stub(dom, "addEventHandler");
mock(controller).expects("handleSubmit").on(controller);
controller.setView(this.element);

dom.addEventHandler.getCall(0).args[2]();
})

This test shows how to use the test spy’s retrieval interface to get the first call to
the dom.addEventHandler method, and then accessing its args array, which
contains the received arguments.

 From the Library of WoweBook.Com

ptg

16.7 Mocks or Stubs? 457

16.7 Mocks or Stubs?
The comparison of stubs and mocks raises the question, stubs or mocks? Unfortu-
nately, there is no answer, other than “it depends.” Stubs are more versatile; they can
be used simply to silence dependencies, fill in for not-yet-implemented interfaces,
force a certain path through the system, and more. Stubs also support both state
verification and behavior verification. Mocks can be used in most scenarios as well,
but only support behavior verification.

Although mocks can also be used to silence dependencies, doing so is somewhat
unpractical because we must take care to set up the expectations to account for
the minimum amount of possible calls, for example by using expectation.

atLeast(0).
Wrapping tests in sinon.test and using mocks definitely yields the fewest

lines of test code. When using stubs, assertions are required, something the implicit
mock verification deals away with. However, as assertions go away, tests may also
end up less clear and intent revealing.

The upfront expectations used by mocks break the convention that the verifica-
tion stage is always carried out last. When mocks are involved, we need to scan the
entire test for verification code. The problem can be mitigated by keeping mock ex-
pectations at the top of the test, but there is still a possibility that further verification
is carried out in assertions in the bottom of the test.

Although the choice between stubs and mocks is mainly one of personal pref-
erence and project convention, there are cases in which you definitely should not
use mocks. Because mocks implicitly perform behavior verification that can break
the test—both during the test and after—mocks should never be casually used to
fake interfaces that are not the focus of a given test.

As an example of unsuitable use of mocks, consider Listing 16.24, which shows
an excerpt of the chat client’s form controllerhandleSubmit test case. ThesetUp
creates an inline model object whose publish method is a stub. Not all tests
interact with this object, but it is required by the controller, which is why it’s fed to
the controller in the setUp method.

Listing 16.24 A stub that should not be made into a mock

setUp: function () {
/* ... */
this.controller = Object.create(messageController);
this.model = { publish: stubFn() };
this.controller.setModel(this.model);
/* ... */

 From the Library of WoweBook.Com

ptg

458 Mocking and Stubbing

},

"test should prevent event default action": function () {
this.controller.handleSubmit(this.event);

assert(this.event.preventDefault.called);
}

Assuming we fell completely in love with mocks, we might have gone and
mocked that model object rather than stubbing it. Doing so means that any test may
fail as a result of unexpected interaction with the model object—even the tests that
focus on something entirely different, such as the event object’spreventDefault
method being called. Mocks should be treated with the same respect as assertions;
don’t add ones that test things you already know, and don’t add ones that don’t
support the goal of the test.

In the case of using a top-down approach to implement, e.g., the user interface
before dependencies such as model objects, both mocks and stubs are good choices.
In this case tests will have to rely on behavior verification alone in any case, meaning
that stubs lose their advantage of supporting less implementation-specific state ver-
ification. In the general sense, however, mocks always rely on behavior verification;
thus, they are inherently more implementation specific.

16.8 Summary
In this chapter we have taken a deep dive into the concept of test doubles, focusing
mainly on stubs, spies and, mocks. Although we have used stubs and spies frequently
throughout Part III, Real-World Test-Driven Development in JavaScript, looking at
them from a wider angle has allowed us to coin some common usage patterns and
describe them using established terminology.

Having gotten through all of five sample projects without one, we investigated
the effects of using a stubbing and mocking library in tests. The manual approach
is easy to employ in JavaScript, and will take you far. Still, using a dedicated library
can reduce the stubbing and mocking related scaffolding, which leads to leaner tests
and less repetition. Removing manual stubbing logic in favor of a well tested library
also reduces chances of bugs in tests.

In light of Sinon, the stubbing and mocking library, mocks were finally pre-
sented. Mocks are stubs pre-programmed with expectations that translate into be-
havior verification. Mocks fail early, by throwing an exception immediately upon
receiving an unexpected call.

 From the Library of WoweBook.Com

ptg

16.8 Summary 459

Closing off the chapter, we discussed mocks versus stubs, wherein we concluded
that stubs are generally more versatile and should be used for isolation purposes that
don’t directly support the goal of the test. Apart from those cases, the choice between
stubs and mocks for behavior verification largely is one of personal preference.

In the next, and last chapter, Chapter 17, Writing Good Unit Tests, we will
extract and review some testing patterns and best practices from our previous sample
projects.

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

17Writing Good Unit Tests

Unit tests can be an incredible asset. When writing tests as part of the test-driven
development cycle, tests help form the design of production code, provide us with
an indication of progress, and help us scope down and only implement what we
really need. When writing tests after the fact, they help form a suite of regression
tests and a security net in which we can comfortably refactor code. However, simply
adding unit tests to a project will not magically fix it. Bad tests not only provide
little value, they can do actual damage to productivity and the ability to evolve the
code base.

Writing good tests is a craft. Even if you already are a skilled programmer, you
will find that getting good at writing tests takes time and practice. Throughout the
example projects in Part III, Real-World Test-Driven Development in JavaScript, we
have written a lot of tests, done a fair amount of refactoring, and gotten comfortable
with test-driven development. In this final chapter we will identify some guidelines
for writing quality tests. As you practice and improve your tests, you can build on
this list, adding your own insights.

By the end of this chapter you will be able to better understand some of
the choices we made throughout Part III, Real-World Test-Driven Development
in JavaScript, as well as pinpoint problems that could have been solved in a better
way.

461

 From the Library of WoweBook.Com

ptg

462 Writing Good Unit Tests

17.1 Improving Readability
Writing tests that can be trusted, are easy to maintain, and clearly state their intent
takes practice. If you have coded along with the examples in Part III, Real-World
Test-Driven Development in JavaScript, you should already have some basic training
doing this, and possibly even have started to develop a nose for good tests.

Readability is a key aspect of a good unit test. If a test is hard to read it is likely
to be misunderstood. This can lead to unfortunate modifications of either tests or
production code, causing the quality of both to drop over time. A good test suite
effectively documents the code under test, and provides a simple overview of what
the code can be expected to do and how it can be used.

17.1.1 Name Tests Clearly to Reveal Intent
The name of a test should clearly and unambiguously state what the purpose of the
test is. A good name makes it easier to understand what a test is trying to achieve, thus
it has more value as unit level documentation and it lessens the chance of someone
changing the test without properly understanding what it’s supposed to verify. A
good name also shows up in the test runner’s report when it fails, pinpointing the
exact source of error.

When working with TDD, the test name is the very first time you put a feature
down in code. Writing the requirement out in words may help us mentally prepare
for the feature we are about to add. If you find it hard to clearly state what the test
is supposed to do, then it is likely you have not properly recognized the goal of the
test, and it is unlikely that jumping straight to writing test code will result in any
kind of quality unit test, or production code for that matter.

17.1.1.1 Focus on Scannability

Good test names make test cases easy to scan. Scanning a test case with well-named
tests should give us a good high-level understanding of what the module being tested
does and how it is expected to behave in response to given input. It can also help
us understand what kinds of cases are not accounted for, which can be useful when
encountering trouble using a library in a specific way.

Although naming is one of those things in which personal preference does have
a play in what is “clear,” I’ve found the following rules of thumb to be of good help.

• JavaScript property identifiers can be arbitrary strings. Use this powerful
feature to name tests with short sentences using spaces, no underscores or
camelCasedTestNames.

• Using the word “should” underpins the test as a behavior specification.

 From the Library of WoweBook.Com

ptg

17.1 Improving Readability 463

• Keep names as short as possible without sacrificing clarity.

• Group-related tests in separate test cases and indicate the relation in the test
case name, thus avoiding the same prefix in a large number of tests.

• Never state what code is expected to do using the word “and;” doing so
indicates the test is not specific enough, i.e., it is likely trying to test more than
one aspect of the target method.

• Focus on the what and why, not the how.

17.1.1.2 Breaking Free of Technical Limitations

All of the tests in Part III, Real-World Test-Driven Development in JavaScript, were
written using libraries that consider any method whose name starts with “test” to
be a test. This leaves room for adding other properties on the test case that are not
run as tests. In the interest of using libraries without modification, we have rolled
with this, ending up with a bunch of tests with names starting with “test should,”
which is a bit of a smell.

Because we can easily add helper functions in a closure surrounding the test
case, there really is no need for the test case to reserve space for helper methods
(i.e., function properties whose names do not start with the obligatory “test”).
By considering any function-valued property a test, test cases could allow more
flexibility in the naming of tests. Luckily, wrapping, e.g., JsTestDriver’s TestCase
function to do just that is simple. Listing 17.1 shows an enhanced test case function.
It works just like the original, only all functions except setUp and tearDown are
considered tests.

Listing 17.1 Enhancing JsTestDriver’s test case function

function testCaseEnhanced(name, tests) {
var testMethods = {};
var property;

for (var testName in tests) {
property = tests[testName];

if (typeof property == "function" &&
!/^(setUp|tearDown)$/.test(testName)) {
testName = "test " + testName;

}

testMethods[testName] = property;
}

return TestCase(name, testMethods);
}

 From the Library of WoweBook.Com

ptg

464 Writing Good Unit Tests

The function simply loops all the properties of the test object, prepends function
property identifiers with “test,” and delegates to the original TestCase. Listing
17.2, shows a test originally from Chapter 12, Abstracting Browser Differences: Ajax,
using the enhanced test case.

Listing 17.2 Using the enhanced test case to improve test name clarity

testCaseEnhanced("RequestTest", {
/* ... */

"should obtain an XMLHttpRequest object": function () {
ajax.get("/url");

assert(ajax.create.called);
}

/* ... */
});

17.1.2 Structure Tests in Setup, Exercise, and Verify Blocks
White space can be used to underline the inherent setup/exercise/verify structure
of tests. Listing 17.3, originally from Chapter 15, TDD and DOM Manipulation: The
Chat Client, shows a test for the user form controller that expects the handle-
Submitmethod to notify observers of the submitted user name. Notice how blank
lines separate each of the setup/exercise/verify phases of the test.

Listing 17.3 Formatting tests with blank lines to improve readability

"test should notify observers of username": function () {
var input = this.element.getElementsByTagName("input")[0];
input.value = "Bullrog";
this.controller.setModel({});
this.controller.setView(this.element);
var observer = stubFn();

this.controller.observe("user", observer);
this.controller.handleSubmit(this.event);

assert(observer.called);
assertEquals("Bullrog", observer.args[0]);

}

 From the Library of WoweBook.Com

ptg

17.1 Improving Readability 465

Physically separating setup, exercise, and verification makes it dead simple to see
what setup is required and how to exercise the given behavior, as well as identifying
the success criteria.

17.1.3 Use Higher-Level Abstractions to Keep Tests Simple
Unit tests should always target a single behavior, nothing more. Usually this corre-
lates with a single assertion per test, but some behaviors are more complex to verify,
thus requiring more assertions. Whenever we find ourselves repeating the same set
of two or three assertions, we should consider introducing higher-level abstractions
to keep tests short and clear.

17.1.3.1 Custom Assertions: Behavior Verification

Custom assertions are one way to abstract away compound verification. The most
glaring example of this from Part III, Real-World Test-Driven Development in
JavaScript, is the behavior verification of the stubs. Listing 17.4 shows a slightly
modified test for the Comet client that expects the client’s observers to be notified
when the dispatch method is called.

Listing 17.4 Expecting observers to be notified

"test dispatch should notify observers": function () {
var client = Object.create(ajax.cometClient);
client.observers = { notify: stubFn() };

client.dispatch({ someEvent: [{ id: 1234 }] });

var args = client.observers.notify.args;
assert(client.observers.notify.called);
assertEquals("someEvent", args[0]);
assertEquals({ id: 1234 }, args[1]);

}

Using the Sinon stubbing library introduced in Chapter 16, Mocking and
Stubbing, we can verify the test using Sinon’s higher-level assertCalledWith
method instead, which makes the test more clearly state its intent, as seen in Listing
17.5.

 From the Library of WoweBook.Com

ptg

466 Writing Good Unit Tests

Listing 17.5 Expecting observers to be notified

"test dispatch should notify observers":
sinon.test(function (stub) {
var client = Object.create(ajax.cometClient);
var observers = client.observers;
stub(observers, "notify");

client.dispatch({ custom: [{ id:1234 }] });

assertCalledWith(observers.notify, "custom", { id:1234 });
})

17.1.3.2 Domain Specific Test Helpers

Another example of repeated patterns from Part III, Real-World Test-Driven
Development in JavaScript, that could be simplified by a higher-level ab-
straction is testing of event handlers. Given that the chat client uses the
custom dom.addEventHandler method in conjunction with Function.

prototype.bind to bind event handlers, we could extract the scaffolding needed
to test this into something like Listing 17.6.

Listing 17.6 Testing event handlers using a higher-level abstraction

"test should handle submit event with bound handleSubmit":
function () {
expectMethodBoundAsEventHandler(
this.controller, "handleSubmit", "submit", function () {

this.controller.setView(this.element);
}.bind(this)

);
}

This simple test replaces two original tests from the user form controller’s test
case, and the imaginary helper method abstracts away some of the cruft related
to stubbing the handler method and addEventHandler, as well as obtaining a
reference to the handler function passed to it to verify that it is called with the object
as this.

When introducing domain and/or project specific test helpers such as this, we
can also test them to make sure they work as expected, and then use them throughout
the project, reducing the amount of scaffolding test code considerably.

 From the Library of WoweBook.Com

ptg

17.1 Improving Readability 467

17.1.4 Reduce Duplication, Not Clarity
As with production code, we should actively remove duplication from tests to keep
them apt for change. If we decide to change the way we create objects of a given
type, it is preferable if that doesn’t force us to change the creation of an object in
30 tests, unless all those tests specifically target the object creation.

However, there is a fine line to walk when reducing duplication in tests—if we
do it too aggressively, we may end up removing important communication from a
test. A good way to check if you have slimmed down a test too much is to extract it
from its test case along with the name of the test case; is it still clear what behavior
the test is describing? If it is not, e.g., because properties are not self-explanatory,
or the state of the system is not clear, then we have taken away too much.

Listing 17.7 shows a test from the chat client’s message-list controller. The test
does not include code to create a controller instance, but still manages to clearly
state that setting the view with setView causes the element set as view to have its
class name set to “js-chat.”

Listing 17.7 Reading a test in isolation

TestCase("MessageListControllerSetViewTest", {
/* ... */

"test should set class to js-chat": function () {
this.controller.setView(this.element);

assertClassName("js-chat", this.element);
}

});

Notice how this test also uses the assertClassName assertion, which can
be considered a high-level assertion.

To avoid repeating too much code throughout Part III, Real-World Test-Driven
Development in JavaScript, I may have sinned against this guideline a few times.
Listing 17.8 shows a test from the same test case that expects addMessage to
create new DOM elements and append them to the view.

Listing 17.8 Possibly too aggressively DRYed test

"test should add dd element with message": function () {
this.controller.addMessage({

user: "Theodore",
message: "We are one"

});

 From the Library of WoweBook.Com

ptg

468 Writing Good Unit Tests

var dds = this.element.getElementsByTagName("dd");
assertEquals(1, dds.length);
assertEquals("We are one", dds[0].innerHTML);

}

Although this test clearly states what happens when the addMessagemethod
is called, it may not be immediately clear that this.element is associated with
the controller by having been set through setView. Making the situation worse,
we did not write a test that describes the fact that without first callingsetViewwith
a DOM element, the addMessage method is not able to do anything useful—a
fact that is not visible from the test in question either.

We could improve the readability of the test by referring to the element as
this.controller.view instead, but keeping the setView call inside the
test probably yields the best readability. What other changes would you suggest to
improve this test’s readability in stand-alone mode?

17.2 Tests as Behavior Specification
When writing unit tests as part of test-driven development, we automatically treat
tests as a specification mechanism—each test defines a distinct requirement and lays
out the next goal to reach. Although we might want to occasionally pick up speed
by introducing more code than “the smallest possible amount of test necessary to
fail the test,” doing so inside one and the same test rarely is the best choice.

17.2.1 Test One Behavior at a Time
Any given unit test should focus clearly on one specific behavior in the system. In
most cases this can be directly related to the number of asserts, or if using mocks,
expectations. Tests are allowed to have more than a single assert, but only when all
the asserts logically test the same behavior. Listing 17.9 revisits a previous example
of a test that uses three assertions to verify one behavior—that calling dispatch
on the Comet client causes the observer to be notified of the right event and with
the right data.

Listing 17.9 Verifying one behavior with three asserts

"test dispatch should notify observers": function () {
var client = Object.create(ajax.cometClient);
client.observers = { notify: stubFn() };

 From the Library of WoweBook.Com

ptg

17.2 Tests as Behavior Specification 469

client.dispatch({ someEvent: [{ id: 1234 }] });

var args = client.observers.notify.args;
assert(client.observers.notify.called);
assertEquals("someEvent", args[0]);
assertEquals({ id: 1234 }, args[1]);

}

Testing only a single behavior in any given test means that when it fails, the
source of failure will be obvious. This is a huge benefit because following this
guideline will completely eradicate the need of a debugger to test the innards of a
method. This single behavior focus also helps make the tests easier to understand.

17.2.2 Test Each Behavior Only Once
Re-testing behaviors already covered in existing tests adds no value to the spec-
ification of the system, neither does it help find bugs. It does, however, add to
the maintenance burden. Testing the same behavior in more than one test means
more tests to update whenever we want to change the behavior, and it means more
tests will fail for the exact same reason, reducing the test case’s ability to pinpoint
erroneous behavior.

The most common source of duplicated verification comes from negligence;
while testing each aspect of a method in dedicated tests, it is easy to inadvertently
introduce an overlap between tests if we don’t pay close attention. Another possible
reason for re-testing verified behavior is lack of trust. If we trust our tests, there is
no reason to question a previous test’s validity by repeating an assertion.

Listing 17.10 shows a test from Chapter 13, Streaming Data with Ajax and
Comet, in which we expect the cometClient not to start polling a second time
if connect has already been called once. Notice how the test simply assumes that
the first call works as expected. The behavior of the first call is covered by other
tests, and there is no need to assert that ajax.poll was called the first time.

Listing 17.10 Assuming connect works the first time

"test should not connect if connected": function () {
this.client.url = "/my/url";
ajax.poll = stubFn({});
this.client.connect();
ajax.poll = stubFn({});

 From the Library of WoweBook.Com

ptg

470 Writing Good Unit Tests

this.client.connect();

assertFalse(ajax.poll.called);
}

Another less obvious source of re-testing the same behavior is covering browser
inconsistencies in the wrong places. If you find yourself testing for DOM-related
quirks inside a method whose purpose is not to cover the specific quirk, you need
to move the offending code into a dedicated function. This way you can verify that
performBuggyDOMRoutine handles all the DOM quirkiness properly across
browsers, and simply verify that depending interfaces use this method.

17.2.3 Isolate Behavior in Tests
When we test a single behavior at a time, pinpointing the source of error when tests
fail is easy. However, discrepancies in indirect inputs may distort the results, causing
tests to fail not because the targeted logic is faulty, but because it’s dependencies are
behaving in unexpected ways. Back in Part I, Test-Driven Development, we referred
to these kinds of tests as “accidental integration tests.” That sure sounds bad, but
as we are about to discover, it does not need to be.

17.2.3.1 Isolation by Mocking and Stubbing

One way to completely isolate a unit is to stub or mock all of its dependencies.
Some people will tell you this is in fact the only way to properly isolate behavior.
Throughout Part III, Real-World Test-Driven Development in JavaScript, there are
lots of examples of tests that stub generously to isolate behavior. Listing 17.11,
originally from Chapter 15, TDD and DOM Manipulation: The Chat Client, shows
a test for the chat client message form controller that stubs all the objects that
handleSubmit interacts with in order to verify that the message is published
through the model object.

Listing 17.11 Stubbing all dependencies

TestCase("FormControllerHandleSubmitTest", {
"test should publish message": function () {
var controller = Object.create(messageController);
var model = { notify: stubFn() };

controller.setModel(model);
controller.handleSubmit();

 From the Library of WoweBook.Com

ptg

17.2 Tests as Behavior Specification 471

assert(model.notify.called);
assertEquals("message", model.notify.args[0]);
assertObject(model.notify.args[1]);

}
});

Rather than performing state verification on the model object to verify that it
received the given message, we stub the notify method and use behavior veri-
fication to verify that it was called correctly. Tests for the cometClient verify
that calling the method correctly will make sure the message is correctly sent to the
server.

17.2.3.2 Risks Introduced by Mocks and Stubs

In dynamic languages such as JavaScript, there is always a risk associated with test
doubles. As an example, consider the test in Listing 17.12, which verifies that the
form is not actually submitted when the user submits a message to the chat service.

Listing 17.12 Verifying that the form submit action is aborted

"test should prevent event default action": function () {
this.controller.handleSubmit(this.event);

assert(this.event.prevenDefault.called);
}

Having written this test, we have introduced a new requirement for the system
under test. After confirming that it fails, we proceed to write the passing code. Once
the test passes, we move on to the next behavior. Upon testing the resulting code in
a browser, we will be shocked to find that the code throws an error when posting a
message.

The observant reader will already have noticed the problem; we accidentally
misspelled preventDefault, leaving out the first “t.” Because the stub is in no
way associated with a real exemplar of the kind of object we are faking, we have no
safety net catching these kinds of errors for us. Languages like Java solve these kinds
of problems with interfaces. Had the event stub been stated to implement the event
interface, we would have realized our mistake, as the test would err because the stub
did not implement preventDefault. Even if it did—e.g., through inheritance—
the call to prevenDefault from production code would have erred because this
method definitely isn’t part of the event interface.

Introducing typos in method names may seem like a silly example, but it’s a
simple illustration of a problem that can take a lot more obscure forms. In the

 From the Library of WoweBook.Com

ptg

472 Writing Good Unit Tests

case of the misspelled method name, you probably would notice the mistake either
while initially writing it, during the initial run or, while writing it again in production
code. If the mismatch between the test double and the real object was the wrong
order or number of arguments passed to a method, it would not have been as
obvious.

While writing the code for the chat server originally covered in Chapter 14,
Server-Side JavaScript with Node.js, I did in fact make such a mistake. In my ini-
tial attempt at the controller’s get method, I made a mistake while constructing
the expected output. As you might remember, the server was supposed to emit
JSON responses that would work with the cometClient. Because my initial
expectations deviated from the actual format used by the client object, the chat
server did not work as expected upon finishing it, even though all the tests passed.
The change to make it work was a simple one, but ideally we should avoid such
mistakes.

This is not to say you shouldn’t use stubs and mocks in your tests. They are
effective tools, but need to be used with some care and attention. Always make
sure to double check that your test doubles properly mirror the real deal. One way
to achieve this is to use a real object as a starting point for the stub or mock. For
instance, imagine a method like sinon.stubEverything(target), which
could be used to create a stub object with stub function properties corresponding
to all the methods of the target object. This way you take away the chance of
using a fake method that doesn’t exist in production code.

17.2.3.3 Isolation by Trust

Another way to isolate units is to make sure that any object the unit interacts with
can somehow be trusted. Obviously, mocks and stubs can generally be trusted so
long as they properly mirror the objects they mimic.

Objects that are already tested can also be trusted. The same should be true
for any third party library code in use. When dependencies are previously tested
and known to work as expected, the chance of failing a test due to uncooperative
dependencies is small enough to provide acceptable isolation.

Although such tests can be considered “accidental integration tests,” they usu-
ally integrate only a small group of objects, and do so in a controlled manner. The
up side to using real objects is that we can use state verification, thus loosening
the coupling between test code and production code. This gives us more room to
refactor the implementation without having to change the tests, thus reducing the
maintenance burden of the application as a whole.

 From the Library of WoweBook.Com

ptg

17.3 Fighting Bugs in Tests 473

17.3 Fighting Bugs in Tests
Developers who are unfamiliar with unit testing often ask “how do you test your
tests?” The answer, of course, is that we don’t. That does not imply that we do
not take measures to reduce defects in tests. The most important way to reduce the
chance of bugs in tests is to never implement logic in tests. A unit test should be a sim-
ple sequence of assignments and function calls followed by one or more assertions.

Apart from keeping tests stupid, the most important tool to catch erroneous
tests is to write and run them before implementing the passing code.

17.3.1 Run Tests before Passing Them
When tests are written before the required production code, they should also be
run before passing it. Doing so allows us to verify that the test fails for the expected
reasons, thus giving us a chance to catch errors in the test itself.

Failing a test with an articulated expectation as to how and why the test should
fail is in fact the most effective means with which we can fight buggy tests. Skipping
this point, we might move on to pass the test immediately. As soon as we have
started writing production code, we are a lot less likely to discover faulty testing
logic and might as well end up passing the test, thus sneaking the wrong behavior
into production code without having tests that can tell us as much.

17.3.2 Write Tests First
To be able to run tests before passing them we obviously need to write them first
as well. Because this book has given some insight into the test-driven development
cycle and how it can apply to JavaScript, the recommendation to write tests first
should not come as a surprise.

Writing tests upfront has benefits beyond making it easier to catch faulty tests.
Tests first ensure that code is inherently testable. If you have ever attempted to
retrofit unit tests onto code that was not originally written with testability in mind,
you will appreciate the importance of testable code.

Writing testable code is not useful only to test it. Unit tests are secluded sample
uses of production code, and if writing a test for any given behavior is hard, well,
then using that particular behavior is hard. If using a small part of the code base
requires half an application’s worth of setup, then the design might not be optimal.
For example, requiring a DOM element and its CSS API in order to transition a
color from red to green is a good example of code that is hard to use for the same
reasons as why it is hard to test.

 From the Library of WoweBook.Com

ptg

474 Writing Good Unit Tests

Ensuring that code is testable means ensuring it is loosely coupled and well
factored, thus flexible and easy to use, both as a whole and in parts. Writing tests
upfront as we do in test-driven development builds testability into the code.

17.3.3 Heckle and Break Code
Sometimes a test suite will be all green, yet the production code clearly exhibits
defects. The source to these kinds of errors are often found in the integration
between moving parts of the application, but sometimes they can be the result of
edge cases not catered for, or worse, bugs in tests.

A great way to smoke out errors in tests and generally assess the quality of a test
suite, is to intentionally introduce errors in production code and then make sure
the tests fail, and for the right reasons. The following “attacks” can prove useful to
find deficiencies in tests.

• Flip the value of boolean expressions.

• Remove return values.

• Misspell or null variables and function arguments.

• Introduce off-by-one errors in loops.

• Mutate the value of internal variables.

For each intentional deficiency you introduce, run the tests. If they all pass, you
know that you have either stumbled upon untested code or code that simply doesn’t
do anything. Either capture the bug with a new unit test or remove the offending
code, and continue.

17.3.4 Use JsLint
JsLint1 is a “JavaScript Code Quality Tool.” Inspired by lint for C, it detects syntac-
tical errors, bad practices, and generally provides many more warnings than most
JavaScript runtimes do today. Syntax errors can cause weird problems in test cases.
A misplaced semicolon or comma can cause only some of your tests to run. Mak-
ing matters worse, the test runner may not be able to warn you about some tests
not being run. Using JsLint both on production code and tests alike will help you
remove typos and other syntax errors, making sure the tests run as expected.

1. http://www.jslint.com/

 From the Library of WoweBook.Com

http://www.jslint.com/

ptg

17.4 Summary 475

17.4 Summary
In this final chapter we have reviewed some simple guidelines that can help improve
the quality of unit tests. Tests, when done right are a great asset, but bad tests can be
worse than no tests because they introduce a significant overhead in maintenance
and complicate working with code without providing any real value.

The guidelines presented throughout this chapter were divided into three
groups: techniques to improve readability, an important quality of a good unit test;
techniques to generate true unit tests that stay at the unit level; and last, techniques
that help avoid buggy tests.

By working through the example projects in Part III, Real-World Test-Driven
Development in JavaScript, and viewing them from a wider angle both in this chapter
and the previous, you should have gained a good understanding of what unit testing
and test-driven development is—and isn’t. Now it is up to you. The only way to get
better is to gain as much experience as possible, and I urge you to start practicing
immediately. Create your own learning tests, add features to the example projects
from the book, or start new projects of your own using TDD. Once you have
grown comfortable within the process that is test-driven development, you won’t
go back—you will become a happier and more productive developer. Good luck!

 From the Library of WoweBook.Com

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

Bibliography

[1] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[2] Hamlet D’Arcy. Forgotten refactorings. http://hamletdarcy.blogspot.com/2009/06/
forgotten-refactorings.html, June 2009.

[3] Kent Beck. Test-Driven Development By Example. Addison-Wesley, 2002.
[4] Wikipedia. You ain’t gonna need it. http://en.wikipedia.org/wiki/You ain’t gonna

need it.
[5] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, 2008.
[6] Douglas Crockford. Durable objects. http://yuiblog.com/blog/2008/05/24/durable-

objects/, May 2008.
[7] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley, 2007.

477

 From the Library of WoweBook.Com

http://hamletdarcy.blogspot.com/2009/06/forgotten-refactorings.html
http://hamletdarcy.blogspot.com/2009/06/forgotten-refactorings.html
http://en.wikipedia.org/wiki/Youain'tgonnaneedit
http://en.wikipedia.org/wiki/Youain'tgonnaneedit
http://yuiblog.com/blog/2008/05/24/durableobjects/
http://yuiblog.com/blog/2008/05/24/durableobjects/

ptg

This page intentionally left blank

 From the Library of WoweBook.Com

ptg

Index

A
acceptance test-driven development, 34
access tokens, 381–382, 385–386

embeds for, 385–386
updates for, 385

ActionScript, 159
activateTab method, 190–192

event delegation in, 190
implementation of, 192
tag name in, 190
testing for, 190–191

activation object, 82
Active X objects, 252

identificators for, 252
addEventHandler method, 206

custom event handlers, 212–213
addMessage, 361–363

as asynchronous, 365–366
callbacks with, 361–362
event emitters with, 374
promise refactoring with, 367–371
testing implementation for, 366
UIDs for, 362–363
updating of, 369

ad hoc scopes, 101–103
avoiding the global scope, 101–102
lightboxes and, 101–102
with nested closures, 103
simulation of, 102–103

AJAX. See Asynchronous JavaScript
and XML

ajax.cometClient, 323–338
data delegation with, 324–325
data dispatching with, 323–327

error handling with, 325–327
event data looping with, 327
expectations for, 323
notifications with, 324–325
observers with, 325–329
public objects with, 326
server connections with, 329–338
setup for, 323

ajax.loadFragment method, 94
ajax.poll, 453
Ajax Push, 314
anonymous closures, 146
anonymous function expression, 74, 101–107.

See also namespaces
ad hoc scopes, 101–103
immediately called, 101–107
namespaces, 103–107

anonymous mocks, 454
anonymous proxy function, 95
APIs. See application programming interfaces
application programming interfaces (APIs),

247–249, 269–277. See also DOM
manipulation

AJAX, 269–277
integration test for, 269–271
local requests for, 273–274
send method and, 271
status testing for, 274–277
TDD and, 247
testing results for, 270–271

apply method, 75, 77
summing numbers with, 91
this keyword and, 90

arbitrary events, 241–246

479

 From the Library of WoweBook.Com

ptg

480 Index

arbitrary events (Continued)
notify method, 243–245
observe method, 241–242

arbitrary objects, 235–241
inheritance motivations, 235
observable behavior for, 235–236
renaming methods and, 240–241

arguments, 97–99
binding functions with, 97–99
bind method and, 97–99
formal parameters v., 173
in memoization, 114
passing, 231–232
setTimeout method and, 97

arguments object, 77–80, 153
accessing properties in, 79
array methods and, 78–79
dynamic mapping of, 79–80
formal parameters, 78–80
modifications of, 79
structure of, 78

array literals, 118
Array.prototype, 121–122
Enumerable module in, 157
method addition to, 122
native object extension for, 122

Array.prototype.splice method,
56–58

arrays, 56
browser consoles, 57
programming, 58
removed item returns, 57
traditional testing, 56

arrays
addObserver method and, 229
arguments object and, 78–79
Array.prototype.splice method, 56
in ECMAScript 5, 175–176
enumerable properties, 123
hard-coding, 225
in observer patterns, 224–225
with obsolete constructors, 238
for refactoring, 226
spliced, 57
for this keyword, 88

assert function, 74
assertions, 9–10, 36

for controllers, 347
functions of, 9
JsTestDriver, 51–52
in POST requests, 283

testing for, 10
in unit tests, 465–466

Asynchronous JavaScript and XML (AJAX),
247–292. See also GET requests; POST
Requests

Ajax Push, 314
APIs, 247–249, 269–277
baseline interfaces for, 290
browser inconsistencies with, 248
development strategy for, 248
directions for, 291
directory layout for, 249
duplication with, 292
GET requests, 255–268
goals of, 248–249
implementation review for, 290
JsTestDriver and, 249–250
namespaces for, 256, 290
onreadystatechangehandler and,

266–267
POST requests, 277–287
refactoring with, 292
request APIs and, 247–249, 288–292
request interfaces and, 249–250
restoring of, 258
Reverse Ajax, 314
source files for, 256
stubbing and, 248–249
TDD and, 292
tddjs.ajax.create method and,

253–254
test cases for, 292
XMLHttpRequest object and, 247–249

asynchronous tests, 35
sleep function in, 35
unit tests and, 35

automated stubbing, 258–260, 262–263
helper method extraction with, 258–259
open method, 259–260
stub helper and, 259

automated testing, 3–19. See also unit tests
assertions, 9–10
debugging with, 3
development of, 3–4
functions, 11–12
green, as symbol for success, 10
integration tests, 14–16
JsUnit, 4
red, as symbol for failure in, 10
setUp method, 13–14
TDD, 30

 From the Library of WoweBook.Com

ptg

Index 481

tearDown method, 13–14
unit tests, 4–10, 16–18

B
BDD. See behavior-driven development
Beck, Kent, 21
behavior-driven development (BDD), 33–34

TDD, 34
user stories in, 34
xUnits and, 33

behavior verification, of test doubles, 442–443
inspection of, 443
isolation of behavior from, 470–472
by mocks, 457, 470–472
stubbing and, 451–452, 470–472
tailored asserts for, 451
unit tests as, 465–466, 468–472

benchmarks, 60–69
binding functions and, 98
definition of, 60
DOM manipulation in, 68
Function.prototype in, 65–66
functions for, 65
highlighting in, 67–68
integration of, 64
loops for, 61–63, 66
measuring of, 67–68
reformatting of, 66
runners for, 61
setup for, 64
tools for, 64–65
use of, 66–67
in Windows Vista, 61

binding functions, 93–100
anonymous proxy functions and, 95
with arguments, 97–99
benchmarks and, 97
bind method, 95–97
currying and, 99–100
Function.prototype.bind, 95–96
lightbox examples of, 93–95
setTimout method, 97
this keyword and, 93–96

bind method, 95–97
arguments and, 97–99
closure and, 96
implementation of, 96
optimized, 98–99
use of, 96

bogus headers, 308
bogus observers, 232–233

exceptions for, 233
non-callable arguments and, 232
preconditions for, 233

bootstrap scripts
in chat client model, 430
message lists and, 421
static files and, 410–411

bottlenecks, in performance tests, 68–69
DOM implementation in, 69
Firebug, 68
locating, 68–69
profiling, 68–69

box-shadow property, 209
browser sniffing, 199–207. See also object

detection, in browser sniffing
event listening fixes in, 198–199
libraries and, 200
object detection in, 199–206
problems with, 200
state of, 200
testing in, 207
updating of, 200
user agent sniffing and, 198–199

C
cache issues, with long polling,

319–320
buster additions, 319–320
URLs and, 319–320

callable host objects, 203–204
callbacks, 308–311

with addMessage, 361–362
complete, 300–302, 311
defaults, 310
in domain models, for Node.js, 358
failure, 310–311
nested, 367
for onreadystatechangehandler,

266–268
polling, for data, 308–311
with server connections, 333
static files and, 409
success, 309–310
tddjs.ajax.poller and, 300–302

calling, of functions, 77–80
arguments object, 77–79
direct, 77–80

call method, 75, 77
this keyword and, 89

call order documentation, 234–235
as feature, 234

 From the Library of WoweBook.Com

ptg

482 Index

cascading style sheets (CSS), 208–210
box-shadow property in, 209
feature testing of, 208–210
static files and, 410
style properties in, 209–210
support detection of, 209

chat client model, for DOM manipulation,
429–434

application styling of, 430–431
bootstrapping script in, 430
compression in, 434
deployment notes in, 433–434
design of, 430–431
input field clearance in, 432–433
message forms in, 429
scrolling in, 431–432
user testing of, 430–433

chatRoom, 372–375
property descriptors for, 373

Circle hybrid, 168–169
circle objects, 88, 152
Circle.prototype, 132–134, 136–137, 143

assignments for, 133
failing assertions for, 133–134
Sphere.prototype and, 138
_super method, 143
testing for, 133

circular references
assertions of, 272
breaking of, 272–273
with XMLHttpRequest object, 271–272

clean code, in TDD, 28
closure

ad hoc scopes, 103
anonymous, 146
in anonymous proxy function, 95
bind method and, 96
functions and, 84
for onreadystatechangehandler, 267
private methods and, 145

code paths, from stubbing, 444–445
Comet, 314–315, 321–338. See also

ajax.cometClient; server
connections

ajax.cometClient, 323–338
browsers with, 321
client interface with, 322
data publishing with, 338
drawbacks to, 314
feature tests for, 338
forever frames and, 314–315

format messaging with, 321–322
HTML5 streaming, 315
JSON response with, 322
limitations of, 314, 321
with observable objects, 321
server connections with, 329–338
XMLHttpRequest streaming, 315

command line productivity, 51
CommonJs modules, 341, 345
CommonJs testing frameworks, 40–41
complete callbacks, 300–302, 311

scheduling of, 302
specifications of, 301–302

console.log method, 76
constructors, 130–136. See also prototypes

broken properties of, 134
circle object, 139
ECMA-262 and, 136
instanceof operators, 136
missing properties for, 134–135
misuse of, 135–136
objects from, 130–132, 239–240
in observer patterns, 223
private methods for, 146–147
problems with, 135–136
prototypes, 130–135

continuous integration, 34–35
for JavaScript, 34–35
minifying code with, 35

controllers, 345–357, 378–386
access tokens and, 381–382, 385–386
application testing, 356–357
application testing for, 386
assertions for, 347
body of, 386
closing connections for, 355–356
closing responses for, 356
CommonJs modules, 345
creation of, 346–347
done method, 346
duplications with, 350, 353
event handlers and, 352
expectations for, 345
formatting messages with, 383–385
GET requests and, 380–386
JSON and, 347–350
malicious data with, 354
message extraction with, 351–354
message filters, 381–382
with message lists, 411–412
module definition, 345–346

 From the Library of WoweBook.Com

ptg

Index 483

MVC, 391
with Node.js, 345–357, 378–386
POST messages, 347–354
post method completion with,

378–380
request bodies with, 348–351
request responses with, 354–356
respond method, 382–383, 386
response codes for, 355
response headers, 386
servers, 356–357
setup for, 351
status codes for, 354–355
stubbing with, 348–349, 353
tabController object, 187–190
tab controllers, 192–196
testing for, 346
in user forms, 392–393

Crockford, Douglas, 148, 175, 333
cross-browser event handling, 210–213
addEventHandler method in,

212–213
custom events in, 211–213
feature detection for, 210–211
normalization in, 211

cross-browsers
event handlers, 210–213
IDE, 17

crosscheck, 42
cross site scripting (XSS) protection, 418
CSS. See cascading style sheets
currying, 99–100

binding v., 99
implementation of, 100

D
Dahl, Ryan, 341
data publishing, with Comet, 338
data streaming, 293–339. See also Comet;

polling, for data; server connections;
tddjs.ajax.poller

with Comet, 314–315, 321–338
long polling for, 315–320
polling for, 294–313
server connections and, 329–338
with Server Push, 293
TDD and, 293

Date.formats.j method, 14
Date.prototype.strftime, 7

JsTestDriver, 47–48
day of year calculations, 15

debugging
assertions and, 9
with automated testing, 3

decoupled code, 22
decrementing functions, 84
dedicated respond method, 383
dependencies, 37
Dojo libraries, 40
domain models, for Node.js, 358–366
addMessage in, 361–363
asynchronous interfaces, 358
bad data in, 359–361
callbacks in, 358
chart room creation, 358
getMessageSince method,

363–365
I/O interface, 358
messages in, 359–366
usernames in, 359–361

DOM events, 42, 207–208
in benchmarks, 68
in bottlenecks, 69
feature detection in, 207–208
feature testing in, 207–208
in IE, 207
in lightbox objects, 94
observer patterns and, 220

DOM manipulation, 389–434. See also chat
client model, for DOM manipulation;
message forms; message lists, with DOM
manipulation; user forms

approaches to, 390–391
chat client model with, 429–434
client display, 391
directory structure for, 390
JsTestDriver configuration in, 390
message forms with, 422–429
message lists with, 411–421
MVC and, 391
MVP and, 391
passive view and, 391
static files in, 408–411
TDD and, 389–434
user forms and, 392–408

done method, 346
DontDelete attribute, 126
DontEnum attribute, 126–128

IE, 127
overriding properties for, 127

dot notation, 118
dummy objects, 441

 From the Library of WoweBook.Com

ptg

484 Index

duplication
with AJAX, 292
with controllers, 350, 353
status testing, for APIs, 274–275
in TDD, 28
test removal, 229–230
with unit test, 467–468
for XMLHttpRequest object, 253

E
Eclipse, 49–51

JsTestDriver installation, 49–50
running tests, 50–51

ECMA-262, 58, 118
constructors and, 136
properties and, 126
prototypal inheritance and, 138
in prototype chains, 119

ECMAScript 5, 25, 58, 159–176. See also strict
mode, in ECMAScript 5

ActionScript and, 159
additions to, 174–176
arrays in, 175–176
backwards compatibility in, 159–160
browser extensions in, 160
Circle hybrid in, 168–169
empowered properties, 162
Enumerable module and, 161
in execution contexts, 81
Firefox and, 160
Function.prototype and, 95
Function.prototype.bind method

in, 175
get function, 161
getters in, 166–167
in global object, 82
Google Chrome and, 160
improvements to, 174–176
JScript.Net and, 159
JSON in, 175
name/value assignment in, 161–162
Object.create method in,

165–168
object models and, 161–171
Object.seal implementation

in, 163
property attributes, 161–163, 167–170
property descriptor changes in, 162
prototypal inheritance in, 164–166
reserved keywords in, 170–171

server connections and, 333
set function, 161
setters in, 166–167
shortcuts in, 164
standard codification for, 160
strict mode in, 160, 171–174
tddjs.extend method and, 156
this keyword and, 90–91
writable function, 161

encapsulation, 145–150
private members and, 147–148
private methods and, 145–147
privileged methods and, 147–148
radius property in, 148

Enumerable module, 157–158
Array.prototype in, 157
in ECMAScript 5 object models, 161

enumerable properties, 122–126
looping arrays, 123
Object.prototype.hasOwnProperty,

124–126
running tests with, 123

env.js library, 42
errback conventions, in Node.js, 358
error handling, 232–235

with ajax.cometClient, 325–327
bogus observer additions and,

232–233
call order documentation and, 234–235
forever frames and, 314
misbehaving observers and, 233–234

event emitters, 372–378
addMessage with, 374
chatRoom with, 372–375
getMessageSince method, 376
waitForMessagesSince method,

375–378
event handlers, 102–103

controllers and, 352
cross-browsers, 210–213
handleSubmit method, 397–398
in object detection, 201
tabController object in, 187–188
unit tests and, 466
in unobtrusive JavaScript, 179
in user forms, 394–395

event listeners, 394–398
application code for, 394–395

events. See arbitrary events; cross-browser event
handling; event handlers

execution context, 80–81

 From the Library of WoweBook.Com

ptg

Index 485

ECMAScript specification, 81
this keyword and, 88
variable object in, 81–82

expression, functions, 74–75, 84–87
anonymous, 74
conditional declarations in, 85
conditional definitions in, 85
feature detection and, 85
hoisting in, 85
named, 75, 86–87
punctuation for, 75
String.prototype.trim method and, 85

F
Facebook, 294
failure callbacks, 310–311
fake objects, 440–441
feature detection, 85, 197–215

Browser sniffing, 199–207
for Comet, 338
for cross-browser event handling, 210–213
in DOM events, 207–208
IE browsers and, 213
for long polling, 320
for message forms, 428–429
for message lists, 420
script production in, 215
self-testing code, 215
in strftime, 214
stubbing and, 263
undetectable features, 214
uses of, 213–214
for XMLHttpRequest object, 254

Fibonacci sequence, 112–114
alternative versions of, 113

Firebug, 68–69
console.log method in, 76
profiler for, 69

Firefox
ECMAScript 5 and, 160
integration tests with, 270–271

for, as enumerable property, 123
forever frames, 314–315

error handling and, 314
for-in, as enumerable property, 123–124
format specifiers, 15–16
Fowler, Martin, 17, 391
functional inheritance, 148–150

definition of, 148
durable objects and, 149
implementation of, 148–149

object extension in, 149–150
patterns, 149
private variables with, 150
Sphere.prototype and, 150

Function.prototype, 65–66, 75–78
apply method, 75, 77
binding functions and, 95–96
call method, 75, 77
ECMAScript 5 and, 95
function creation, 77

Function.prototype.bind method, 175
Function.prototype.inherit functions,

152–153
functions, 73–91. See also anonymous function

expression; arguments object; binding
functions; expression, of functions; stateful
functions; this keyword

activation object and, 82
anonymous proxy, 95
arguments object and, 77–80
assert, 74
binding, 93–100
calling of, 77–80
closure and, 84
declarations of, 73–74
decrementing, 84
definitions of, 73–77
execution contexts, 80–81
expression of, 74–75, 84–87
formal parameters of, 74
free variables, 84
Function.prototype, 75–78
global object and, 82–83
hoisting of, 82, 85
incrementing, 84
length property, 76
Object.prototype, 75
scope, 80–84
stateful, 107–112
this keyword, 87–91

function scope, 80

G
Geisendörfer, Felix, 408
getMessageSince method, 363–365

addition of, 364
message retrieval testing with, 363–365
with promises, 372
proxy for, 376

getPanel function, 193–195
toggles in, 193–194

 From the Library of WoweBook.Com

ptg

486 Index

GET requests, 255–268
automated stubbing and, 258–260, 262–263
controllers and, 380–386
formatting messages with, 383–385
improved stubbing and, 261–263
manual stubbing and, 257–258
onreadystatechangehandler, 263–268
POST requests and, 285–287
respond method, 382–384
stubbing, 257–263
tddjs.ajax.create object and, 255
URL requirement for, 255–256

getters, 166–167
Giammarchi, Andrea, 208
global object, 82–83
Array.prototype and, 122
ECMAScript in, 82
property assignment in, 83
this keyword in, 88
window and, 83

global scope, 80, 101–102
Gmail, unobtrusive JavaScript in, 184
Gnome Shell, 160
Google Chrome, 160
green, as symbol for success in unit testing, 10
GTalk, 294

H
handleSubmit method, 397–398, 401–402,

404
message forms and, 425

hard-coding, 27, 225–226
in addObserver method, 227
for arrays, 225
for inputs, 27
for outputs, 27

headers, in data polling, 308–311
bogus, 308
passing on, 309

headless testing frameworks, 41–42
crosscheck, 42
DOM implementation, 42
env.js library, 42
issues with, 42
Rhino, 42

Heilmann, Chris, 178
hoisting, of functions, 82, 85
host objects, 202–204

callable, 203–204
ECMAScript specification in, 202
feature detection in, 204

in IE, 202
unfriendly, 203

HTML5 streaming, 315
Hypertext Markup Language (HTML), 269–271

in Comet, streaming for, 315
integration testing, 269–271
in JsTestDriver, 400
in static files, 409–410
in unobtrusive JavaScript, 177
user form embedding with, 400–401

I
IDE. See integrated development environment
IE. See Internet Explorer
immediately called anonymous functions,

101–107
ad hoc scopes and, 101–103
punctuation and, 101

improved stubbing, 261–263
in-browser test frameworks, 37–43. See also

YUI test
disadvantages of, 42–43
Dojo, 40
headless, 41–42
JsTestDriver, 43–51
JsUnit, 37, 40
Prototype.js, 40
QUnit, 40
URL query string, 37
YUI test, 38–40

incrementing functions, 84
inheritance models, 119–120
Object.create method, 151

inputs
for hard-coding, 27
in TDD, 24–25

instanceof operators, 136
integrated development environment (IDE), 17,

49–51. See also Eclipse
Eclipse, 49–51
IntelliJ IDEA, 49
JsTestDriver, 49–51

integration tests, 14–16
for APIs, 269–271
Date.formats.j method, 14
for day of year calculations, 15
with Firefox, 270–271
format specifiers in, 15–16
high-level, 14
HTML document testing, 269
script for, 269–270

 From the Library of WoweBook.Com

ptg

Index 487

IntelliJ IDEA, 49
Internet Explorer (IE), 127–128
addObserver method, 228
DOM events in, 207
DontEnum attribute in, 127
feature detection and, 213
host objects in, 202
named function expressions in, 86–87
Object.defineProperty in, 166
XMLHttpRequest object and, 252

I/O interfaces, 358
iterators, 109–112

closures, 109
functional approach to, 111–112
looping with, 112
tddjs.iterator method, 109–111

J
Jar file, 44–45

on Linux, 45
starting servers, 45–46
for Windows users, 45

JavaScript. See also Asynchronous JavaScript
and XML; Node.js; unobtrusive JavaScript

ECMAScript 5 in, 25
JsLint, 474
Mozilla, 58
observer pattern in, 220–221
programming of, 58–59
unit tests, 55–60
unobtrusive, 177–196
writing cross-browser code in, 197

JavaScriptCore, 58
JavaScript dates, 5–9
strftime for, 5–9

jQuery
performance tests, 69
tabbed panels, 196
in unobtrusive JavaScript, 195–196

JScript.Net, 58, 159
JsLint, 474
JSON, support for, 175

in Comet, 322
controllers, in Node.js, 347–350
server connections and, 331, 333–334

JsTestDriver, 43–52. See also Jar file
AJAX and, 249–250
assertions, 51–52
browser capture for, 46
in browsers, 43
command line productivity, 51

configuration files for, 249–250
configuration for, 48
Date.prototype.strftime, 47–48
disadvantages of, 44
in DOM manipulation, 390
functions of, 43–44
HTML in, 400
IDE, 49–51
Jar file, 44–45
Linux testing, 48
load paths, 46
observer patterns and, 221
OSX testing, 48
plug-ins, 43
polling data and, 295
project layout for, 249–250
running tests for, 46–48
server connections and, 333
setup, 44–49
starting servers for, 45–46
TDD and, 48–49
timer testing, 303–308
uid’s and, 108
updating of, 262
user form configurations, 404
Windows testing for, 48

JsUnit
in In-Browser test frameworks, 37
testing frameworks, 4, 37, 40
timer testing, 303–304

L
learning tests, 56, 59–60

bugs and, 59
frameworks, 60
new browsers, 59
wisdom from, 59

lightbox objects, 93–95
ad hoc scopes and, 101–102
ajax.loadFragment method, 94
pseudo code for, 94

Linux
ECMAScript 5 and, 160
Jar file on, 45
JsTestDriver testing, 48

load paths, 46–47
local requests, 273–274

success handler for, 273–274
URLs and, 274

long polling, 315–320
cache issues with, 319–320

 From the Library of WoweBook.Com

ptg

488 Index

long polling (Continued)
feature tests for, 320
implementation of, 316–319
low latency from, 316
stubbing dates with, 316–319

looping properties, 128–130
ajax.cometClient, 327

M
manual stubbing, 257–258
memoization, 112–115

argument serialization in, 114
definition of, 112
Fibonacci sequence in, 112–114
general methods, 113–114
limiting of, 114

messageFormController, 424
message forms, 422–429

acquisition of, 428
in chat client model, 429
for current users, 426–428
empty function additions in, 426
extraction of, 423
feature tests for, 428–429
handleSubmit method and, 425
message clearance in, 433
message form controllers and, 422
messageFormController with, 424
publishing of, 425–428
refactoring of, 423–425
setModel moving in, 425
TDD and, 428
test setup with, 422
userFormController with, 423–424
view setting with, 422–425

messageListController, 412
message lists, with DOM manipulation,

411–421
addMessage with, 413–414
bootstrap scripts and, 421
controller definition with, 411–412
feature tests for, 420
initialization of, 420–421
message addition to, 416–418
messageListController, 412
model setting, 411–414
node lists and, 419
observe method with, 413
reference storage with, 417
repeated messages in, 418–420
scrolling of, 432

setModel in, 413
setView method and, 393, 414–416
subscription to, 412–414
user additions, 416
user tracking in, 419
view settings, 414–416
XSS protection in, 418

Meszaros, Gerard, 440
misbehaving observers, 233–234

exceptions, 234
mixins, 157–158

definition of, 157
Enumerable module and, 157–158

mocks, 453–458
ajax.poll, 453
anonymous, 454
automatic verification of, 454
behavior verification with, 457,

470–472
definition of, 453
dependency silencing by, 457
method restoration of, 453–454
multiple expectations of, 455–456
notify method and, 454
in POST requests, 284
stubs v., 457–458
for tddjs.ajax.poller, 298–299
this value, 456

Model-View-Controller (MVC), 391
Model-View-Presenter (MVP), 391

axis for, 391
components for, 391
passive view in, 391

module patterns, 107
mouseover events, 184
Mozilla, 58
MVC. See Model-View-Controller
MVP. See Model-View-Presenter

N
named function expressions, 75

in Internet Explorer, 86–87
namespace method, 187
namespaces, 103–107

for AJAX, 256, 290
custom creation of, 106
definition of, 105–106
functions of, 104–105
implementation of, 104–106
importing, 106–107
in libraries, 104

 From the Library of WoweBook.Com

ptg

Index 489

native, 103
objects as, 103–104
for XMLHttpRequest object, 251

name tabbed panels, 182
name tests, 462
native objects, 202–204

ECMAScript specification in, 202
nested callbacks, 367
new operators, 131–132
Node.js, 341–387. See also controllers; domain

models, for Node.js; promises, with
Node.js

access tokens in, 381–382, 385–386
assertions for, 347
controllers with, 345–357, 378–386
directory structure for, 342–343
domain models, 358–366
environments for, setting up, 342–343
event emitters, 372–378
events with, 342
framework testing for, 343
HTTP server, 344
message filters, 381–382
nested callbacks and, 367
node-paperboy, 408–409
promises with, 367–372
respond method with, 382–383
runtime, 341–344
servers with, 343–344
starting point for, 343–344
startup scripts for, 344
static files, 408–411
storage for, 358–366
stubbing and, 452
test scripts for, 343

node lists, 419
node-paperboy, 408–409
notify method, 243–245

arguments for, 243
implementation of, 245
mocks and, 454
relevant observers for, 243–244
storage of, 244–245
testing for, 244
updating of, 245

O
object(s), 117–136, 150–157. See also arbitrary

objects; private methods, for objects
arbitrary, 235–241
arguments, 153

circle, 152
composition, 150–157
from constructors, 130–132, 239–240
direct inheritance in, 151
ECMA-262, 118
encapsulation of, 145–150
in functional inheritance, 149–150
information hiding and, 145–150
inspection of, 131
mixins, 157–158
new operators, 131–132
Object.create method, 151–153
object literals, 117–118
Object.prototype.hasOwnProperty,

125
observable, 239–240
private methods for, 145–147
prototype chains, 119–122
prototypes, 130–135
radius property, 131
sphere, 151–152
in strict mode, 174
tddjs.extend method, 153–157

Object.create method, 151–153, 168–169
direct inheritance in, 151
ECMAScript 5 and, 165–166, 167–168
for function creation, 169–170
Function.prototype.inherit

function, 152–153
implementation of, 152, 165–166
inheritance models, 151
with properties, 165

Object.defineProperty, 166
object detection, in browser sniffing,

199–206
addEventHandler method and, 206
event handling in, 201
host objects and, 202–204
individual features of, 200
native objects and, 202–204
premise of, 200
purposes of, 200–206
sample use testing in, 204–206
strftime and, 204–206
testing of, 201
type checking in, 201–202

object literals, 117–118
object model, ECMAScript 5 and, 161–171
Circle hybrid in, 168–169
empowered properties, 162
Enumerable module and, 161

 From the Library of WoweBook.Com

ptg

490 Index

object model, ECMAScript 5 and (Continued)
get function, 161
getters in, 166–167
name/value assignment in, 161–162
Object.create method in, 165–168
Object.seal implementation in, 163
property attributes, 161–163, 167–170
property descriptor changes in, 162
prototypal inheritance in, 164–166
reserved keywords in, 170–171
set function, 161
setters in, 166–167
shortcuts in, 164
writable, 161

Object.prototype, 75, 120–121
Object.prototype.hasOwnProperty,

124–126
browsers in, 125
loop qualification, 124
objects in, 125

Object.seal method, 163
observable objects, 239–240

with Comet, 321
observe method, 241–242

call updating, 241–242
formal parameters for, 242
message lists, 413

observer notification, 230–232
calls, 230–231
passing arguments in, 231–232

observer pattern, 219–246. See also arbitrary
objects; bogus observers; error handling;
observer notification

adding constructors in, 223
adding observers to, 222–225
addObserver method with, 224–230
for arbitrary events, 241–246
for arbitrary objects, 235–241
arrays in, 224–225
code writing for, 220
configuration files with, 221
definition of, 219
directory layouts in, 221
DOM events and, 220
environment setting for, 221
error handling in, 232–235
in JavaScript, 220–221
JsTestDriver and, 221
Observable constructors with, 222
observe method, 241–242
observer notification, 230–232

refactoring with, 17, 225–226, 229–230
roles within, 219–220
search results for, 220
stubbing and, 445
testing, 222–225

observers, with ajax.cometClient,
325–329

addition of, 327–329
saving of, 328
testing of, 328
type checking of, 329

obsolete constructors, 236–238
addObserver method and, 237
array definition with, 238
emptying of, 238

one-liners, 311–313
poller interfaces, 311
start method and, 312–313
URLs and, 313

onreadystatechangehandler, 263–268
AJAX and, 266–267
anonymous closure of, 267
assignment verification for, 264
callbacks for, 266–268
empty, 264
handling of, 265–268
send method, 264–265
testing of, 265–268

open method, 259–260
OSX, JsTestDriver testing for, 48
outputs

in hard-coding, 27
in TDD, 24–25

P
passing arguments, 231–232

test confirmation and, 231
performance tests, 60–69

benchmarks, 60–69
bottlenecks, 68–69
closures, 60
footprints for, 63
jQuery, 69
relative performance of, 60–69
setTimeout calls, 63
YUI, 63

Plug-ins, for JsTestDriver, 43
polling, for data, 294–313. See also

tddjs.ajax.poller
callbacks and, 308–311
directory layout in, 294

 From the Library of WoweBook.Com

ptg

Index 491

in Facebook, 294
final version of, 313
in GTalk, 294
headers and, 308–311
jsTestDriver and, 295
load order with, 295
one-liners and, 311–313
project layout in, 294–295
with server connections, 330, 334
with tddjs.ajax.poller,

295–302
timer testing, 303–308

post method, 378–380
closing connections with, 379
response times with, 380
verification delay with, 379

POST requests, 277–287
assertions in, 283
configuration methods with, 278–279
copy-pasting for, 278
cropping, 280
data additions, 286–287
data handling functions in, 284–285
data transport for, 282–287
delegation to, 281
encoding data in, 283–285
expectation of, 281
extraction of data in, 278, 285
GET requests and, 285–287
implementation of, 277–281
introductions for, 281
method call changes for, 280
mocking in, 284
Node.js messages, 347–354
ReadyStateHandlerTest, 280
setting headers for, 287
string encoding with, 282
stubbing in, 284
in TDD, 279
test cases for, 279–280
updating of, 280
URLs and, 282, 285

private methods, for objects, 145–147
closures and, 145
definition of, 145–146
function object creations in, 147
inside constructors, 146–147

promises, with Node.js, 367–372
addMessage refactoring, 367–371
consumption of, 371–372
definition of, 367

getMessageSince method
with, 372

grouping of, 371–372
nested callbacks, 367
rejection of, 369–370
resolution of, 370–371
resolve method with, 367
returning, 368–369
test conversion with, 371
then method with, 369

properties, prototypal inheritance and,
117–130

access, 118–119
attributes, 126–130
DontDelete attribute for, 126
DontEnum attribute for, 126–128
dot notation in, 118
ECMA-262 and, 126
enumerable, 122–126
inheritance, 120–121
looping, 128–130
names, with spaces, 119
ReadOnly attribute for, 126
shadowing, 120–121
square bracket notation in, 118
test methods for, 119
toString method and, 119
values for, 120
whitespace and, 118

property identifiers, reserved keywords and,
170–171

prototypal inheritance, 117–130, 136–144, 158.
See also functional inheritance; _super
method

access in, 138–139
Circle.prototype, 136–137
ECMA-262 and, 138
in ECMAScript 5, 164–166
functional, 148–150, 158
functions, 137–138
implementation of, 138
properties and, 117–130
specifications for, 137
Sphere.prototype, 136–137
super, as concept, 139–144
_super method, 140–143
surface area calculations for, 139–140

prototype chains, 119–122
Array.prototype, 121–122
ECMA-262 specification in, 119
inheritance models, 119–120

 From the Library of WoweBook.Com

ptg

492 Index

prototype chains, (Continued)
object extension through, 121–122
Object.prototype, 120–121

Prototype.js library, 40
prototypes, 130–135
Circle.prototype, 132–134, 136–137,

143
constructors, 130, 132
property additions to, 132–135

Q
QUnit testing frameworks, 40

R
radius property, 131

in encapsulation, 148
ReadOnly attribute, 126
ReadyStateHandlerTest, 280
red, as symbol for failure in unit testing, 10
refactoring, 17, 225–226, 229–230

with addMessage, 367–371
with addObserver method, 225
with AJAX, 292
arrays for, 226
duplicated test removal, 229–230
hard-coding and, 225–226
of message forms, 423–425
method renaming and, 17
in notify method, 245
with observer pattern, 17
TDD and, 28
test failure and, 17
unit tests, 17

regression testing, 16
renaming methods, 240–241
reserved keywords, 170–171

property identifiers and, 170–171
Resig, John, 42
resolve method, 367
respond method, 382–384, 386

dedicated, 383
initial tests for, 382–384

response codes, 355
Reverse Ajax, 314
Rhino, 42

S
saboteurs, 445
scope, 80–84

Ad Hoc, 101–103
blocking of, 80
chains in, 83–84

function, 80, 82
global, 80, 101–102

scope chain, 83–84
decrementing functions, 84
incrementing functions, 84

scrolling, 431–432
of message lists, 432
stubbing in, 432

send method
onreadystatechangehandler and,

264–265
server connections, 329–338

callbacks with, 333
concerns with, 334–338
custom headers with, 336
data dispatching with, 332–334
ECMAScript5 and, 333
exceptions to, 331
JSON data and, 331, 333–334
JsTestDriver and, 333
missing URLs and, 331
obtaining of, 329
polling for, 330, 334
request headers with, 337
response data in, 332
tokens with, 336

Server Push, 293
setModel additions, 402

with message forms, 425
with message lists, 413

setters, 166–167
setTimeout calls, 63
setTimout method, binding

arguments, 97
setUp function, xUnits and, 35
setUp method, 13–14
setView method, 393, 414–416

compliant, 415
single responsibility principle, 30–31
sleep function, 35
slice function, 153
sphere objects, 151–152
Sphere.prototype, 136–137
Circle.prototype and, 138
functional inheritance and, 150
implementation of, 143
_super method, 143
testing for, 137

spliced arrays, 57
square bracket notation, 118
start method, 296–298

 From the Library of WoweBook.Com

ptg

Index 493

additions of, 297
definition for, 297
one-liners and, 312–313
polling for data and, 312–313

stateful functions, 107–112. See also iterators
generating uid’s, 107–109
iterators, 109–112
memoization, 112–115
module patterns, 107

state verification, of test doubles, 442
static files, 408–411

bootstrap scripts and, 410–411
callbacks and, 409
chapp’s servers and, 409
CSS files, 410
HTML in, 409–410

status codes, 354–355
status testing, for APIs, 274–277

coding in, 276–277
duplication reduction and, 274–275
fake requests and, 275
request helpers for, 275–276
success/failure callbacks and, 277
TDD and, 276

storage
with message lists, 417
for Node.js, 358–366
of notify method, 244–245
for uid’s, variable states, 109
unit tests and, 4
in user forms, 403

strftime, 5–9
Date.prototype.strftime, 7
defining of, 205
feature detection in, 214
Firebug session and, 7
implementation of, 205–206
object detection and, 204–206
restructuring of, 12
starting point for, 5–6
test cases with, 12
test pages with, 8
use of, 205–206
YUI test and, 38–40

strict mode, in ECMAScript 5, 160, 171–174
changes, 172–174
enabling of, 171–172
formal parameters in, 172–173
functions in, 172–174
global object, 171
implicit globals in, 172

local, 171–172
objects in, 174
properties in, 174
restrictions in, 174
variables in, 174

String.prototype.trim method, 24–25
function expression and, 85
successful testing of, 27, 29
test failure and, 25

stubbing, 257–263, 443–445, 447–452
AJAX and, 248–249
automated, 258–260, 262–263
behavior verification with, 451–452,

470–472
code paths from, 444–445
with controllers, 348–349, 353
Date, 316–319
DOM and, 444
feature detection and, 263
global methods and, 448
improved, 261–263
inconvenient interfaces and, 444
libraries, 447–452
with long polling, 316–320
manual, 257–258
mocks v., 457–458
Node.js and, 452
Observer pattern and, 445
in POST requests, 284
saboteurs, 445
in scrolling, 432
for tddjs.ajax.poller, 298–299
test doubles and, 443–445, 447–452
testing timers and, 303, 305
test spies with, 445–446
throwaway, 448
with user forms, 397, 403
with waitForMessagesSince method,

375–376
of XMLHttpRequest object, 248–249,

257–263
stubbing Date, 316–319

fixed output constructors, 316
intervals between, 318
requests with, 317
testing with, 317–319
timers and, 318–319

stub helper, 259
stub libraries, 447–452

automatic management with, 449–450
automatic restoring of, 450

 From the Library of WoweBook.Com

ptg

494 Index

stub libraries, (Continued)
functions of, 448
manual spying with, 448–449
methods, 448–450
Observer patterns and, 447

success callbacks, 309–310
passing of, 310

SUnit, 5
super, as concept, 139–144
_super method, 140–143
Circle.prototype, 143
helper functions, 143–144
implementation of, 142, 144
performance of, 143
Sphere.prototype, 143
testing of, 141
try-catch and, 143

T
tabbed panels, 179–182, 185–196
activateTab method, 190–192
class names in, 186–187
clean markup for, 181–182
getPanel function in, 194–195
jQuery, 196
name, 182
namespace method and, 187
shared setUp, 186
styles for, 182
tabController object, 187–190
tab controllers in, 192–196
tddjs.extend method and, 187
in TDD projects, 185
testing for, 186–187

tabController object, 187–190
behaviors of, 189
DOM event listener, 188–189
event handlers in, 187–188
implementation of, 188, 190
test cases for, 188

tab controllers, 192–196
getPanel function in, 193–195

TDD. See test-driven development
tddjs.ajax.create object, 253–254

Get requests and, 255
tddjs.ajax.poller, 295–302

callbacks and, 300–302
definition of, 296
exceptions for, 297
expectations of, 296
object definition with, 296

requests for, 299–300
running tests in, 300
start method for, 296–298
stubbing strategy for, 298–299
URLs, 297–299

tddjs.extend method, 153–157
arrays, 153
Boolean strings in, 156
dummy objects, 155
ECMAScript 3 and, 156
ECMAScript 5 and, 156
explicit borrowing in, 154
implementation of, 155
initial testing in, 154–155
method collection in, 154
null method, 155–156
single arguments in, 156
slice functions, 153
sources in, 156
tabbed panels and, 187

tddjs.iterator method, 109–111
implementation of, 110–111

tearDown function, in xUnits, 35
tearDown method, 13–14, 307
testability, of unit tests, 18
testCase function, 11–12
test coverage report, 36
test doubles, 439–459. See also stubbing

definition of, 439
dummy objects and, 441
fake objects and, 440–441
mocks and, 453–458
overview of, 439–441
real-life comparisons to, 440
stubbing and, 443–445, 447–452
verification of, 441–443

test-driven development (TDD), 21–31
acceptance of, 34
AJAX and, 292
APIs and, 247
autotesting in, 30
BDD and, 34
benefits of, 30–31
clean code in, 28
conscious development in, 31
data streaming and, 293
decoupled code in, 22
design, 22–23
development cycle changes for, 22
DOM manipulation and, 389–434
duplication, 28

 From the Library of WoweBook.Com

ptg

Index 495

ECMAScript 5 in, 25
facilitation of, 29–30
goals of, 21
hard-coding in, 27
inputs for, 24–25
JsTestDriver and, 48–49
message forms and, 428
outputs for, 24–25
POST requests and, 279
process of, 23–29
productivity boosts from, 31
purpose of, 21
refactoring, 28
sample code in, 22
single responsibility principle, 30–31
status testing and, 276
String.prototype.trim method and,

24–25
successful testing of, 26–27
in tabbed panels, 185
test failure for, 25
test-writing for, 24–25
unobtrusive JavaScript and, 182
workable code from, 30
YAGNI methodology for, 26

test functions, 11–12
testing. See automated testing
testing timers, with polling, 303–308

configurable intervals, 306–308
extraction with, 306
helper methods and, 304
JsUnit and, 303–304
new request scheduling, 304–306
required waits with, 306
running tests, 306
scheduling with, 305
stubbing and, 303, 305
tearDown methods, 307

test reports, 36
test runner, 35–36

test coverage reports for, 36
test reports for, 36

test spies, 445–447
detail inspection with, 446–447
indirect input testing with, 446

then method, 369
this keyword, 87–91

anonymous proxy function, 95
apply method and, 90
array methods for, 88
behaviors of, 87–88

binding functions and, 93–96
Boolean strings and, 89–90
calling functions and, 89
call method and, 89
circle object, 88
ECMAScript 5 mode, 90–91
execution contexts and, 88
explicit setting for, 89
in global objects, 88
implicit setting for, 88–89
mocks and, 456
primitives as, 89–91
summing numbers with, 90–91
values for, 88

throwaway stubs, 448
toString method, 119
try-catch, 143
Twitter, search feature for, 69
type checking, 201–202

features of, 201–202

U
uid’s. See unique IDs
unfriendly host objects, 203
uniform resource locators (URLs)

cache issues, 319–320
for Get requests, 255–256
local requests and, 274
one-liners and, 313
POST requests and, 282, 285
query string, 37
server connections and, 331
tddjs.ajax.poller and, 297–299

unique IDs (uid’s), 107–109
for addMessage, 362–363
free variable storage states and, 109
implementation of, 108–109
JsTestDriver and, 108
specification of, 107–108

unit tests, 4–10, 16–18, 461–475
Array.prototype.splice method,

56–58
assertions in, 465–466
asynchronous tests, 35
behavior verification, 465–466, 468–472
benefits of, 16–18
bugs in, 473–475
code breaking in, 474
Cross-Browser testing, 17
definition of, 4
disk storage and, 4

 From the Library of WoweBook.Com

ptg

496 Index

unit tests (Continued)
domain specific test helpers and, 466
duplication with, 467–468
event handlers and, 466
exercise structure for, 464–465
formatting of, 464–465
functionality testing for, 57
green, as symbol for success in, 10
high-level abstractions in, 465–466
JavaScript, 55–60
JavaScript dates, 5–9
JsLint and, 474
learning tests and, 56
name tests for, 462
pitfalls of, 18
readability of, 462–468
red, as symbol for failure in, 10
refactoring, 17
regression, 16
scannability of, 462–463
setup structure for, 464–465
SUnit, 5
technical limitations of, 463–464
testability of, 18
test case functions, 463–464
verify structure for, 464–465
whitespace matching, 58–59
writing of, 57
writing of, 461–475
xUnits and, 5

unobtrusive JavaScript, 177–196
accessibility of, 178
assumptions in, 183–184
clean code in, 177
code decoupling in, 179
definition of, 177
event delegation in, 179
event handlers in, 179
extensibility of, 178
fallback solutions in, 183–184
flexibility of, 178
global footprint of, 183
in Gmail, 184
goals of, 177–178
isolation within, 183
jQuery in, 195–196
mouseover events in, 184
performance of, 178
progressive enhancement in, 182

robustness in, 178
rules of, 178–182, 184–185
semantic HTML in, 177
tabbed panels in, 179–182, 185–196
tabcontroller object in, 187–190
TDD and, 182
WCAG for, 184

URLs. See uniform resource locators
user agent sniffing, 198–199
userFormController, 423–424
user forms, 392–408

class additions to, 393–394
class removals to, 406
controller definitions in, 392–393
default action changes, 398–400
event handlers in, 394–395
event listener additions to, 394–398
handleSubmit method with, 397–398,

401–402, 404
HTML embeds with, 400–401
JsTestDriver configuration, 404
namespace method in, 187, 395
observer notifications with, 403–406
reference storage in, 403
setModel additions, 402
setUp code extraction, 396
setup sharing for, 399–400
setView method with, 393
stubbing with, 397, 403
submit events with, 398–407
test cases for, 392–393
test setup with, 405
usernames in, 401–403
view setting with, 392–398

usernames, 406–408
in domain models, 359–361
feature tests for, 407–408
rejection of, 406–407
in user forms, 401–403

user stories, 34

V
variable object, in execution context, 81–82
verification, of test doubles, 441–443

behavior, 442–443
implications of, 443
of mocks, 454
stages of, 441
state, 442

 From the Library of WoweBook.Com

ptg

Index 497

W
waitForMessagesSince method, 375–378

listener additions in, 376–377
message listener implementation with, 377
resolution with, 375
stubbing with, 375–376

WCAG. See web content accessibility guidelines
web content accessibility guidelines (WCAG),

184
whitespace

matching, 58–59
properties and, 118

Windows
Jar file for, 45
JsTestDriver tests, 48

Windows Vista, benchmarks in, 61

X
XMLHttpRequest object, 247–254, 263–268.

See also long polling
Active X objects and, 252
background for, 251–253
browser inconsistencies with, 248
circular references with, 271–272
code duplication for, 253
in Comet, 315
creation of, 250–254
development strategy for, 248
extraction of, 262
feature detection for, 254
goals of, 248–249
IE and, 252
instantiation of, 252
interface style for, 250
long polling, 315–320
namespace creation for, 251

onreadystatechangehandler,
263–268

running tests for, 253
standards for, 251–252
stubbing of, 248–249, 257–263
support for, 254
testing of, 251

XSS protection. See cross site scripting
protection

xUnits, 5, 33, 35–37
assertions, 36
BDD, 33
dependencies, 37
setUp function in, 35
special values for, 36
tearDown function in, 35
test frameworks for, 35–36
test reports for, 36
test runner for, 35–36

Y
YAGNI methodology. See “You ain’t gonna need

it” methodology
“You ain’t gonna need it” (YAGNI)

methodology, 26
YUI test, 38–40

HTML fixture file, 38
as performance test, 63
for production code, 40
running tests, 40, 41
setup of, 38–40
strftime file, 38–40

Z
Zaytsev, Juriy, 207
Zyp, Kris, 367

 From the Library of WoweBook.Com

	Contents
	Preface
	Acknowledgments
	About the Author
	Part I: Test-Driven Development
	1. Automated Testing
	1.1 The Unit Test
	1.2 Assertions
	1.3 Test Functions, Cases and Suites
	1.4 Integration Tests
	1.5 Benefits of Unit Tests
	1.6 Pitfalls of Unit Testing
	1.7 Summary

	2. The Test-Driven Development Process
	2.1 Goal and Purpose of Test-Driven Development
	2.2 The Process
	2.3 Facilitating Test-Driven Development
	2.4 Benefits of Test-Driven Development
	2.5 Summary

	3. Tools of the Trade
	3.1 xUnit Test Frameworks
	3.2 In-Browser Test Frameworks
	3.3 Headless Testing Frameworks
	3.4 One Test Runner to Rule Them All
	3.5 Summary

	4. Test to Learn
	4.1 Exploring JavaScript with Unit Tests
	4.2 Performance Tests
	4.3 Summary

	Part II: JavaScript for Programmers
	5. Functions
	5.1 Defining Functions
	5.2 Calling Functions
	5.3 Scope and Execution Context
	5.4 The this Keyword
	5.5 Summary

	6. Applied Functions and Closures
	6.1 Binding Functions
	6.2 Immediately Called Anonymous Functions
	6.3 Stateful Functions
	6.4 Memoization
	6.5 Summary

	7. Objects and Prototypal Inheritance
	7.1 Objects and Properties
	7.2 Creating Objects with Constructors
	7.3 Pseudo-classical Inheritance
	7.4 Encapsulation and Information Hiding
	7.5 Object Composition and Mixins
	7.6 Summary

	8. ECMAScript 5th Edition
	8.1 The Close Future of JavaScript
	8.2 Updates to the Object Model
	8.3 Strict Mode
	8.4 Various Additions and Improvements
	8.5 Summary

	9. Unobtrusive JavaScript
	9.1 The Goal of Unobtrusive JavaScript
	9.2 The Rules of Unobtrusive JavaScript
	9.3 Do Not Make Assumptions
	9.4 When Do the Rules Apply?
	9.5 Unobtrusive Tabbed Panel Example
	9.6 Summary

	10. Feature Detection
	10.1 Browser Sniffing
	10.2 Using Object Detection for Good
	10.3 Feature Testing DOM Events
	10.4 Feature Testing CSS Properties
	10.5 Cross-Browser Event Handlers
	10.6 Using Feature Detection
	10.7 Summary

	Part III: Real-World Test-Driven Development in JavaScript
	11. The Observer Pattern
	11.1 The Observer in JavaScript
	11.2 Adding Observers
	11.3 Checking for Observers
	11.4 Notifying Observers
	11.5 Error Handling
	11.6 Observing Arbitrary Objects
	11.7 Observing Arbitrary Events
	11.8 Summary

	12. Abstracting Browser Differences: Ajax
	12.1 Test Driving a Request API
	12.2 Implementing the Request Interface
	12.3 Creating an XMLHttpRequest Object
	12.4 Making Get Requests
	12.5 Using the Ajax API
	12.6 Making POST Requests
	12.7 Reviewing the Request API
	12.8 Summary

	13. Streaming Data with Ajax and Comet
	13.1 Polling for Data
	13.2 Comet
	13.3 Long Polling XMLHttpRequest
	13.4 The Comet Client
	13.5 Summary

	14. Server-Side JavaScript with Node.js
	14.1 The Node.js Runtime
	14.2 The Controller
	14.3 Domain Model and Storage
	14.4 Promises
	14.5 Event Emitters
	14.6 Returning to the Controller
	14.7 Summary

	15. TDD and DOM Manipulation: The Chat Client
	15.1 Planning the Client
	15.2 The User Form
	15.3 Using the Client with the Node.js Backend
	15.4 The Message List
	15.5 The Message Form
	15.6 The Final Chat Client
	15.7 Summary

	PartIV: Testing Patterns
	16. Mocking and Stubbing
	16.1 An Overview of Test Doubles
	16.2 Test Verification
	16.3 Stubs
	16.4 Test Spies
	16.5 Using a Stub Library
	16.6 Mocks
	16.7 Mocks or Stubs?
	16.8 Summary

	17. Writing Good Unit Tests
	17.1 Improving Readability
	17.2 Tests as Behavior Specification
	17.3 Fighting Bugs in Tests
	17.4 Summary

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	text:

